
Composite Constant Propagation and its
Application to Android Program Analysis

Damien Octeau,Member, IEEE, Daniel Luchaup, Somesh Jha, and Patrick McDaniel, Fellow, IEEE

Abstract—Many program analyses require statically inferring the possible values of composite types. However, current approaches

either do not account for correlations between object fields or do so in an ad hocmanner. In this paper, we introduce the problem of

composite constant propagation. We develop the first generic solver that infers all possible values of complex objects in an

interprocedural, flow and context-sensitive manner, taking field correlations into account. Composite constant propagation problems

are specified using COAL, a declarative language. We apply our COAL solver to the problem of inferring Android Inter-Component

Communication (ICC) values, which is required to understand how the components of Android applications interact. Using COAL, we

model ICC objects in Android more thoroughly than the state-of-the-art. We compute ICC values for 489 applications from the Google

Play store. The ICC values we infer are substantially more precise than previous work. The analysis is efficient, taking two minutes per

application on average. While this work can be used as the basis for many whole-program analyses of Android applications, the COAL

solver can also be used to infer the values of composite objects in many other contexts.

Index Terms—Composite constant, constant propagation, inter-component communication, ICC, Android application analysis

Ç

1 INTRODUCTION

PROGRAM analyses sometimes need to statically infer the
possible values of object fields. Such a program analysis

that has recently received interest [11], [17], [35] is the infer-
ence of messages communicated between Android applica-
tions. The components of Android applications can interact
with one another using platform-specific constructs. This
Inter-Component Communication (ICC) facilitates the reuse
of functionality, both within and between applications. For
example, an application may need to render a map centered
on specific geographic coordinates. In Android, this applica-
tion simply needs to send an ICC message, which will be
relayed to an appropriate target by the Android system.
The target will then render the map based on passed values.

This development model potentially presents concerns.
First, exposed application components may be activated in
unexpectedways, leading, for example, to privilege escalation
attacks [16], [27]. Second, ICC messages can be intercepted by
malicious recipients, with consequences ranging from data
leaks [8] to piracy [31]. Finally, since information may flow
between components, secure information flow analysis must
account for inter-component flows. Without ICC analysis, in

order to remain conservative, static taint analyses in Android
have to assume that any data coming from another compo-
nent is tainted [1]. With ICC analysis, such a taint analysis can
precisely determine if inter-component links carry tainted
data. Thus, ICC analysis has proven very valuable in many
contexts such as information flow analysis [24], [26], [40], [43],
patch generation for privilege escalation vulnerabilities [44]
and detection of stealthy behavior [20].

In order to infer facts about interactions between compo-
nents, we need to find all possible values of the fields of ICC
objects at program points where message passing occurs.
Unfortunately, existing studies of application interfaces are
limited. The Epicc tool [35] tries to determine the specifica-
tions of ICC interfaces. Unfortunately, it only addresses
Intent messages and a small subset of URI messages for
which all fields are constant values. Adding complete sup-
port for URIs using the same approach as for Intents would
result in a significant increase in the complexity of the for-
mulation and implementation of the data flow functions.
While this is possible in theory, it is not feasible in practice.
Apposcopy [17] also infers Intent values but does not com-
pute all fields of an Intent. In particular, similarly to Epicc
URI data is not inferred.

In this paper, we define the problem of Multi-Valued
Composite (MVC) constant propagation. Unlike most con-
stant propagation analyses, we attempt to find all possible
values of objects of interest at important program points,
making our analysis multi-valued. Our analysis targets com-
posite constants, i.e., we determine the values of complex
objects that may have multiple fields, taking the correlations
between fields into account. Problems are specified using
the COAL declarative language. We design a COAL solver,
which takes COAL specifications and programs as input
and outputs composite constant values at program points
of interest. In order to automatically generate data flow
functions, it utilizes the concept of field transformers, which
express how fields are changed by program statements.

� D. Octeau is with the Department of Computer Sciences, University of
Wisconsin, Madison, WI, and with the Department of Computer Science
and Engineering, Pennsylvania State University, University Park, PA.
E-mail: octeau@cse.psu.edu.

� D. Luchaup is with the CyLab, Carnegie Mellon University, Pittsburgh,
PA. E-mail: luchaup@andrew.cmu.edu.

� S. Jha is with the Department of Computer Sciences, University of Wiscon-
sin, Madison, WI. E-mail: jha@cs.wisc.edu.

� P. McDaniel is with the Department of Computer Science and Engineer-
ing, Pennsylvania State University, University Park, PA.
E-mail: mcdaniel@cse.psu.edu.

Manuscript received 6 Aug. 2015; revised 1 Feb. 2016; accepted 6 Mar. 2016.
Date of publication 4 Apr. 2016; date of current version 18 Nov. 2016.
Recommended for acceptance by C. Zhang.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2016.2550446

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 11, NOVEMBER 2016 999

0098-5589� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

While MVC constant propagation was motivated by
Android ICC analysis [34], this work applies to a wide vari-
ety of static program analyses where the range of values of
objects needs to be determined. It is valuable in various areas
such as software security, maintenance and modeling. It can
apply tomany object oriented programming languages.

As an application of our composite constant propagation
solver, we implemented and evaluated IC3, a new tool for
Android ICC analysis. In the COAL language, we modeled
all ICC messages with about 750 lines of COAL specifica-
tion. Since Android ICC messages heavily rely on strings of
characters, we devised and implemented a string analysis
that is both efficient and more precise than the one in Epicc.
We computed ICC values in 489 applications from the offi-
cial Play store. Our analysis found 14,537 possible ICC val-
ues, whereas an analysis not taking field correlations into
account would have found 4,807,771. This is a significant
reduction in the number of inferred unfeasible values. We
precisely inferred all fields of ICC values in 84 percent of
cases. Epicc, on the other hand, could only infer 68 percent
precisely. The remaining 16 percent of values could not be
determined because of constructs not yet handled by our
string analysis and some pathological cases. Computing
ICC values was efficient, taking on average two minutes
per application. The extra precision in inferring ICC values
directly translated to a significant increase in precision
when matching messages with potential receivers. Since the
matching process is an overapproximation of actual runtime
communication, having fewer links between message-
sending code locations and potential recipients is desirable.
In our experiments with 489 applications, such a matching
yielded 192,662 links with ICC values computed by Epicc,
whereas values computed with IC3 produced only 42,238
potential links. We make the following contributions:

� We introduce the MVC constant propagation
problem.

� We define COAL, a declarative language to specify
MVC constant propagation problems and query
their solution.

� We formally define an approach to solve MVC
constant propagation problems in an interproce-
dural, flow and context-sensitive manner. We imple-
ment a COAL solver based on this formalism and
open source it at: http://siis.cse.psu.edu/coal/

� We build IC3, an ICC analysis tool that relies on the
COAL solver. As a part of IC3, we develop a string
analysis that is finely tuned for the most typical cases
found in Android applications. We make its source
code available at: http://siis.cse.psu.edu/ic3/

2 A MOTIVATING EXAMPLE: ANDROID ICC

Android applications are composed of four different types of
components. Activities represent the user interface. Services
provide background processing. Content Providers enable
sharing of structured data between components. Broadcast
Receivers receivemessages sent to the entire system.

Components can communicate with one another using
two kinds of objects. Uniform Resource Identifiers (URIs) are
used to address data in Content Providers. Intent object are
used in all other cases. The target component of an Intent can

be specified by explicitly naming it, or it can be determined
automatically by the Android system based on the fields of
the Intent. An Intent resolution proceduremaps a given Intent
to possible targets. Several fields of an implicit Intent are
used to match it with potential targets. The action field repre-
sents the operation that the receiving component should per-
form. The categories field adds information about the
component that the system can use. For instance, the system
places components with the LAUNCHER category in the main
application launcher. The data field includes data that the
receiving component should act on. It has the form of a URI.

Components can subscribe to receive implicit Intents by
specifying Intent Filters, which describe the actions, catego-
ries and data of the Intents that should be addressed to
them. Most Intent Filters are specified in the manifest file
that is included with every application.

Fig. 1 shows a representative example of Android ICC.
In this figure and in the remainder of this paper, we abbre-
viate string values for ease of exposition. Fig. 1a shows a
method that sends an Intent in order to render a map cen-
tered at given coordinates. An Intent intent is created. Its
action is set to VIEW, which is a generic action used to dis-
play many kinds of data. The data of the Intent is defined
to be a URI with the geo scheme followed by coordinates.
When the startActivityðÞ framework method is called, the
operating system (OS) resolves potential target compo-
nents, prompting the user to choose a recipient if several
components match.

Fig. 1b is a component declaration as it can be found in an
application manifest. The activity element (Line 1)
declares that the application contains an Activity component
with name MapRenderingActivity that includes a single
Intent Filter. The action line specifies that the action field of
Intents received by the component should have value VIEW.

Fig. 1. Intent and Intent Filter used for rendering a map and for displaying
a dialer. The real string values have been abbreviated for clarity.

1000 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 11, NOVEMBER 2016

The data declaration at Line 4 specifies that any received
Intent should carry data in the form of a URI with a geo

scheme. Finally, the category line declares that received
Intents can carry the DEFAULT category. This category is
added by the OS to implicit Intents targeting Activities, such
as the one on Line 6 of Fig. 1a. Therefore, MapRenderin-
gActivity could receive the Intent created in Fig. 1a.

In order to statically know how application components
communicate with one another, we need to determine the
values of ICC objects at message-passing program points.
For example, in Fig. 1a, we want to know all the possible
values of intent at statement startActivity(intent). Objects
of interest are Intents, Intent Filters and URIs. It is very chal-
lenging to write data flow models separately for all of these.
That is why previous work [35] has not properly handled
URIs, which has two negative consequences. First, interac-
tions with Content Providers cannot be determined. Second,
the data field of Intents cannot be known, which signifi-
cantly limits the Intent resolution process. Any field that
cannot be known results in a loss of precision. For example,
mapping the Intent from Fig. 1a with the component from
Fig. 1b requires knowing the action and the URI data of the
Intent. When the data field is not known, any attempt to
resolve the possible targets of intent from Fig. 1a has to con-
servatively assume that the data field can take any value.
Fig. 1c declares a dialer Activity DialerActivity. It is
similar to MapRenderingActivity, except that it adds
support for a DIAL action and it handles tel URI schemes.
Because of its inability to infer Intent URI data, the current
state-of-the-art [35] would conservatively assume that both
MapRenderingActivity and DialerActivity can
receive the Intent. In reality, only the former is able to do so.
Thus, more precision is needed to avoid such false positives.

We address this issue in this article. In Sections 3 through 6,
we introduce a novel approach to statically infer the set of
values that objects can take. In Section 7, we apply this
approach to the problem of inferringAndroid ICC values.

3 OVERVIEW

3.1 The MVC Constant Propagation Problem

Consider OBJ an object of type class Pair{int X; int

Y;}. Assume that at some program location OBJ can be
either (X, Y) = (1, 10) or (2, 20). We would like an
analysis that can determine this fact. Classical constant anal-
ysis applied for each field fails at determining a useful value
because none of the fields is the same constant across all
paths. Multi-valued constant analysis could determine that
OBJ:X 2 f1; 2g and OBJ:Y 2 f10; 20g. These constraints accu-
rately describe the individual fields, but they allow for
imprecision in the object, because they allow the possibility
that OBJ = (1, 20). We define the Multi-Valued Composite
constant propagation problem to be the problem of deter-
mining the set of values that an object viewed as a tuple (such
as (X, Y)) can have. Note that the above multi-valued con-
stant analysis applied to individual fields is a possible solu-
tion, it may just not be precise enough for certain analyses.
We will show how to efficiently find more precise solutions.

We now introduce a running example that will be used
throughout. Fig. 2a shows code for a hypothetical Intent
class that contains data used for passing messages between

application components. It uses a data field which is copied
from a Uri object, for which code is also shown in Fig. 2a.
Fig. 2b defines method sendMessageðÞ, which we assume to
be called as part of an Android application. This method
creates an Intent object and sets its action field. Then,
depending on the value of a Boolean, one of two things can
happen. In the first branch after the if statement, a value is
added to the categories field of intent. Then the data field of a
Uri object is copied to the data field of intent at Line 8. In the
fall-through branch, the data and type fields of the intent
variable are set using a call to setDataAndTypeðÞ (Line 11).
Finally, the Intent object is sent to another component using
the startActivityðÞmethod.

The data flow problem we are solving is to determine all
the possible values of the fields of intent at the call to
startActivityðÞ. In our propagation framework defined
below, the problem can be specified using COAL, a declara-
tive summarization language we designed for this purpose.
The function of COAL (COnstant propAgation Language) is to
specify Multi-Valued Composite constant propagation problems.
It describes three elements to specify the problem:

� The types of the variables for which we are trying to
infer possible runtime values.

� How these variables are modified by methods.
� The program locations where the potential values of

the variables should be inferred.
It enables abstract reasoning on the semantics of API

methods. The COAL language is recognized by our COAL
solver, which outputs solutions for many propagation prob-
lems solely from their COAL specification and an input
program.

Fig. 2c shows how to specify the problem with our frame-
work using COAL. The COAL specification is manually
written once and it can subsequently be used to solve the
same problem for an arbitrary number of applications. The
specification only describes classes of interest, for instance
the Intent and Uri classes in our motivating example. It is
composed of field declarations, modifiers and a query. The
field declarations specify the fields that are being tracked
and their type. The first modifier indicates how the
setActionðÞ method influences the modeled value of an
Intent object. A modifier specification starts with the signa-
ture of the modeled method. Each line in a modifier declara-
tion is an argument whose value is used to modify the
Intent value. Each argument declaration is composed of sev-
eral attributes. An integer declares the position of the argu-
ment in the array of arguments to the method, with indices
starting at 0. After the argument index, an operation and a
field are declared. They describe both the field that is modi-
fied by the method and how it is modified. For example, in
the setActionðÞ modifier, 0: replace action means that
the action field is replaced with the value of the first argu-
ment to setActionðÞ. Other modifiers are declared in a simi-
lar manner, except when the type of an argument is a class
that is modeled with COAL. In that case, a type attribute is
used in order to specify which field of the argument object
is used. For example, in the setDataðÞ modifier, the 0:

replace data, type Uri:data argument means that the
data field of the Uri argument is used to replace the data field
of the Intent being modified.

OCTEAU ETAL.: COMPOSITE CONSTANT PROPAGATION AND ITS APPLICATION TO ANDROID PROGRAM ANALYSIS 1001

The query statement indicates that we would like to infer
the values of Intent arguments of all calls to startActivityðÞ.
Similarly to the modifier declaration, we specify a list of
arguments. They describe the arguments whose value we
would like to query. In this case, it is the first argument (as
described by the 0 attribute), which is an Intent object. The
source at Line 22 indicates how a field value flows out of an
object. This is useful when the value subsequently flows
into a COAL modifier, since the COAL solver can then infer
the correct value.

Fig. 2d shows the expected result of our analysis. We
want our analysis to recover the three possible values of
Intent intent. These values correspond to all possible execu-
tion paths of the program from Fig. 2b. We wish to recover
exactly these possible values, and we do not want all the
possible combinations of fields. For example, it is not possi-
ble in our problem to have an Intent value with category
BROWSABLE and MIME type image/jpg. As a result, our

analysis does not simply track fields individually as sepa-
rate variables, but rather propagates composite constants.

3.2 MVC Constant Propagation Analysis

Fig. 3 shows a general overview of the analysis process that
takes an application as input and outputs the values of com-
posite objects. It starts by converting the program to an inter-
mediate representation that is suitable for further analysis
(Step 1). It then generates an Interprocedural Control Flow Graph
(ICFG) (Step 2). An ICFG is a collection of CFGs of all the pro-
cedures in the program connected with each other at proce-
dure call sites. This includes building a call graph for the
entire program. Finally, the actual MVC data flow analysis
takes place in Step 3 and outputs theMVC constant values.

Existing work [1], [33] can perform Steps 1 and 2. There-
fore, the scope of this paper is limited to the MVC data flow
analysis (Step 3), which is performed using our COAL
solver. Fig. 4 depicts a more detailed overview of the COAL
solver, which takes two inputs. First, it uses the ICFG of the
program being analyzed. Second, it takes a COAL specifica-
tion for the problem being solved. This COAL specification
describes the structure of the composite objects for which
constant propagation should be performed. It also describes
the methods that can modify these objects and the programFig. 3. General overview of the MVC constant analysis process.

Fig. 2. Running example.

1002 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 11, NOVEMBER 2016

locations where the constants should be computed. The
specification is written using the COAL language, which
allows MVC constant propagation problems to be specified
easily. It should be noted that, for a given problem, the
COAL specification need only be written once, after which
an arbitrary number of programs can be analyzed. Our anal-
ysis is flow-sensitive, context-sensitive, and it takes aliasing
into account through the process described in Section 7.

For each program, the COAL specification is parsed to
build a model of the problem by creating problem-specific
lattices of values and data flow functions. These are input
with the ICFG into a solver for Interprocedural Distributive
Environment (IDE) problems [38]. We present the generic
IDE model for constant propagation in Section 5. Finally,
since the values of arguments to functions have to be known,
we use argument value analyses (e.g., integer and string anal-
yses) to generate the data flow functions. In particular, in Sec-
tion 7.1 we present a string analysis that is finely tuned for
the purposes of Android. It efficiently models idiomatic con-
structs such as string concatenation and flows through fields.

The IDE solver outputs the analysis results. The COAL
language allows specification of program points of interest
(queries) where the MVC constant values should be com-
puted. This is useful in cases where the program points of
interest are known in advance. In other cases, we also allow
lower-level queries to the IDE solver as part of the COAL
solver API. The results can then be output in a simple text
format or accessed using a programmatic interface (API).

4 THE COAL LANGUAGE

The goal of the COAL language is to specify and query a
wide variety of MVC constant propagation problems.
COAL specifications are used by our solver to automatically
generate semilattices of values and data flow functions.

A simplified grammar for this language is presented on
Fig. 5. The {} characters symbolize repetition, while []

characters surround optional parts of a production.
The model for a given object is composed of field declara-

tions, modifiers, constants and sources. Queries can also be
specified using the COAL language to specify program
points where MVC constants should be inferred.

Field declarations. A field declaration specifies a field that
is part of the modeled class. It describes a data type and a
name for the field. In Fig. 5, we use non-terminals htypei
and hfield namei to represent valid types and field names.

Modifiers. Modifiers represent method calls where values
flow to the modeled object. The specification of the modifiers
comprises amethod signature hmethod sigi that identifies the

method of interest. It also includes a set of arguments that
describe how the method arguments are used to modify the
fields of themodeled object. Amodifier argument has several
attributes. An argument index identifies the method argu-
ment of interest. In some cases, several arguments contribute
to the value of a single field. That is why the language sup-
ports sets of argument indices. A field operation to be per-
formed is also specified. This allows the solver to create
appropriate data flow functions. Natively supported field
operations are add (add argument value to the field),
remove (remove argument value from field), replace

(replace field with argument value) and clear (clear field
value). The add and remove operations only apply to fields
with container types and are undefined for primitive types
such as strings or integers. A precise definition of these opera-
tions is presented in Section 5.2. A modifier specification also
includes a field name that identifies the field being modified.
In the case where an argument is a class modeled with
COAL, an argument type and additional field name are spec-
ified. This indicates to the solver that the value of a field of a
modeled class flows to the object beingmodified.

Constants. Many languages allow the specification of con-
stants (e.g., static final fields in Java). The constants of a class
are initialized in the class initializer the first time the class is
referenced. A na€ıve way to deal with constants would con-
sist in tracking the constant creation and initialization as it
is done for all modeled objects. We would then propagate
them throughout the entire program at the cost of perfor-
mance. As a performance optimization, we allow constant
objects to be modeled in COAL. Where these values are
used, the COAL solver uses the specified value.

Sources. Sources model the case where a field value flows
out of an object specified in COAL. This is useful if the field
value subsequently flows to another object modeled in
COAL. For example, in Line 11 of Fig. 2b, the data field of a
Uri object flows to the data field of an Intent object. The
COAL source declaration at Line 22 of Fig. 2c enables the
COAL solver to use the value of the Uri field to determine
the value of the Intent variable.

Queries. Queries specify statements of interest where
modeled values should be determined so that they are used
by a client analysis.

Fig. 4. The MVC data flow analysis process (Step 3 from Fig. 3).

Fig. 5. COAL language for specifying MVC constant propagation
problems.

OCTEAU ETAL.: COMPOSITE CONSTANT PROPAGATION AND ITS APPLICATION TO ANDROID PROGRAM ANALYSIS 1003

The MVC constant propagation problem from Fig. 2b can
be solved by inputting the program and the specification
from Fig. 2c into our COAL solver. Alternative methods
such as code annotations could be used to specify these
problems. However, our approach specifies all analysis
parameters in a single location and does not require the
source code of the modeled objects. Annotations, on the
other hand, would require source code and they would
have to be spread over the modeled code. In our motivating
example of Android, this implies spreading specifications
over thousands of lines code. Finally, while we designed
the COAL language to be easy to use, other alternatives are
possible for expressing data flows (e.g., XML schema). It is
possible to add front-ends to the COAL solver that support
these alternative designs.

5 A GENERIC MODEL FOR MVC CONSTANT

PROPAGATION

The purpose of the COAL language and the associated con-
stant propagation solver is to determine the possible values
of composite objects by only defining a COAL specification.
The COAL solver automatically converts the COAL specifi-
cation to an instance of an Interprocedural Distributive
Environment problem, using the model defined in this sec-
tion. Given an IDE problem, existing algorithms can com-
pute a solution [38]. This section presents the analysis
domain and a space F of functions that model the influence
of COAL modifiers. They will subsequently be used in Sec-
tion 6 to automatically build reductions to IDE problems.

5.1 The L Semilattice of Values

For any setX, we denote the power set ofX (i.e., all subsets of

X) by 2X and the set of functions from X toX by XX. In this
section, we are trying to determine the value of an object with
n fields, taking values in finite sets V1; . . . ; Vn. For i 2
f1; . . . ; ng, let Pi ¼ Vi [fvg, wherev represents an undefined

value. Let B ¼ P1 � � � � � Pn. We define L ¼ ð2B;[Þ a join-
semilattice with a bottom element ? ¼ ? . The join operation
onL is the set union[. The top element ofL is the set of all ele-
ments in B. It should be noted that lattice L is specific to the
modeled object andwe use a single lattice for each object type.

The sets V1; . . . ; Vn are the domains of the field values we
are trying to determine. For example, V1 could be the set of
constant strings of characters in the program. A value in B
represents a value as it is seen on a single path. Finally, val-
ues in L represent values of objects, taking into account sev-
eral paths of a program.

Let us consider the example from Fig. 2a. We are inter-
ested in four fields: action, categories, data and mimeType,
which take values in domains P1, P2, P3 and P4, respec-
tively. Let S be the set of string constants in the program.
In this case, we consider P1 ¼ P3 ¼ P4 ¼ S [fvg and P2 ¼
2S [fvg. In other words, we consider the categories fields to
take values in the power set of S. On the other hand, the
action, data and mimeType fields take values in S. We have

B ¼ P1 � P2 � P3 � P4 and L ¼ ð2B;[Þ.
In method sendMessageðÞ, the value associated with the

intent variable is initially ? before Line 2. Line 2 transforms
this value to fðnull;? ; null; nullÞg. Right after Line 3, the
value is

fðVIEW;? ; null; nullÞg: (1)

In the first branch of the if statement, the value associated
with intent is transformed to

fðVIEW; fBROWSABLEg; http:==a=b=c; nullÞg: (2)

We have used the fact that the data field of uri contains
http://a/b/c. In the fall-through branch of the if state-
ment, this value becomes

fðVIEW;? ; file:===foo:jpg; image=jpgÞ;
ðVIEW;? ; file:===foo:jpg; image=�Þg: (3)

When the two branches merge, at Line 12, the value
becomes

fðVIEW; fBROWSABLEg; http:==a=b=c; nullÞ;
ðVIEW;? ; file:===foo:jpg; image=jpgÞ;
ðVIEW;? ; file:===foo:jpg; image=�Þg;

(4)

which is the set union of (2) and (3). Note that we have used
the fact that in Fig. 2b, the mimeType argument may have
value either image/jpg or image/*.

5.2 Transformers on L

The intuition behind the COAL language is that each argu-
ment in a COAL modifier represents the influence of the
method call on a field. Accordingly, we introduce trans-
formers that are defined at the granularity of fields. In this
section, we assume that the value of uri is available where
necessary. We revisit this assumption in Section 6.4.

Definition 1. For i 2 f1; . . . ; ng, we define Fi a non-empty sub-

set of PPi
i closed under composition. Each f 2 Fi is called a

field transformer.

In this paper, we consider field transformers f such that:

� Type (1): fðvÞ ¼ v and for all X 2 Pi such that
X 6¼ v, fðXÞ ¼ ðX �KILLÞ [GEN , for some con-
stant sets GEN and KILL in Pi. Such a function will

also be denoted as f ¼ fKILL
GEN .

� Type (2): For all X 2 Pi, fðXÞ ¼ GEN , for some
GEN in Pi. This case is also denoted by f ¼ fGEN .

It is easy to verify that the set of such field transformers is
closed under composition. Using these notations, we can
precisely define the operations introduced in Section 4:

� For any add operation, there exists a set GEN 2 Pi

such that the add operation is modeled by f?

GEN .
� For any remove operation, there exists a set

KILL 2 Pi such that the remove operation is mod-

eled by fKILL
?

.
� For any replace operation, there exists a set

GEN 2 Pi such that the replace operation is mod-
eled by fGEN .

� The clear operation is modeled by f
?
for sets and

by fnull for scalars.
Let us denote the identity field transformer by id. The

important idea is that each modifier argument in COAL is
mapped to a single field transformer. For example, let us
consider the statement at Line 3 of Fig. 2b. Using the

1004 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 11, NOVEMBER 2016

definition above and the fact that this method replaces the
existing action value, we can model it using type (2) field
transformer fVIEW .

Field transformers are used as basic building blocks for
data flow functions. We define L, the set of functions from
B to B such that for any l 2 L, there exists ðf1; . . . ;fnÞ 2
F1 � � � � � Fn such that, for any b ¼ ðb1; . . . ;bnÞ 2 B, lðbÞ ¼
ðf1ðb1Þ; . . . ;fnðbnÞÞ. We note l ¼ f1 � � � � � fn. Recall that
the influence of the statement at Line 3 of Fig. 2b on field
action is modeled by field transformer fVIEW . The function
in L that models the influence of the setActionðÞ call on the
action field is quite naturally fVIEW � id� id� id 2 L. This
function solely modifies the action field.

The functions in L model the influence of a single execu-
tion path. We can define their composition as follows. For

any l1 ¼ f1
1 � � � � � f1

n and l2 ¼ f2
1 � � � � � f2

n in L:

l1 � l2 ¼ f1
1 � f2

1 � � � � � f1
n � f2

n:

Using Definition 1, L is closed under composition.
We now define a set F of functions from L to L using

functions in L. Functions in F can model the influence of
several execution paths on all fields of an object. More spe-
cifically, in order to model m executions paths, any f 2 F is
written f ¼ fl1; . . . ; lmg, with l1; . . . ; lm 2 L, such that:

� for any b 2 B, fðfbgÞ ¼ S m
i¼1liðbÞ,

� for any v ¼ fb1; . . . ; bkg 2 L, fðvÞ ¼ S k
i¼1fðfbigÞ.

The identity over L is denoted by idL. Additionally, F
contains V, which is such that for all v 2 L, VðvÞ ¼ ?. Infor-
mally, the V function is used to “kill” data flow facts, which
only occurs when a variable is assigned a new value.
Finally, F contains initv functions, which are such that
initvð?Þ ¼ v, with v 2 L. Informally, init functions generate
data flow facts and associate them with an initial value.

Let us now consider the if statement in Fig. 2b. The influ-
ence of the first branch can be summarized by function

fid� f?

fBROWSABLEg � fhttp:==a=b=c � fnullg, where fnull clears

the value of the mimeType field. The second branch is mod-
eled by function

fid� id� ffile:===foo:jpg � fimage=jpg;

id� id� ffile:===foo:jpg � fimage=�g:
(5)

Finally, the influence of the two branches is summarized by

fid� f?

fBROWSABLEg � fhttp:==a=b=c � fnull;

id� id� ffile:===foo:jpg � fimage=jpg;

id� id� ffile:===foo:jpg � fimage=�g:
(6)

We can verify that applying this function to the value given
by Equation (1) yields the value given by Equation (4).

We define the composition of two functions f1 ¼
fl11; . . . ; l1mg and f2 ¼ fl21; . . . ; l2kg in F to be the pairwise com-

position of all l1a with all l2b , for 1 � a � m and 1 � b � k:

f1 � f2 ¼ l11 � l21; . . . ; l11 � l2k; . . . ; l1m � l21; . . . ; l1m � l2k
� �

:

In the Appendix in the supplemental material, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TSE.2016.2550446, we

prove the following proposition by defining the composi-
tion of other functions in F (e.g., V).

Proposition 1. F is closed under composition.

Finally, we define the [operator such that, for f1 ¼
fl11; . . . ;l1mg and f2¼fl21; . . . ; l2kg, f1 [f2¼fl11; . . . ; l1m; l21; . . . ; l2kg.

6 FROM COAL SPECIFICATIONS TO IDE
PROBLEMS

This section presents how COAL specifications are used to
automatically generate instances of IDE problems by gener-
ating data flow functions in F . Recall that IDE problems can
then be solved using existing algorithms [38]. We first out-
line the requirements of IDE problems.

6.1 Environment Transformers

LetD be the set that comprises all variables of the type mod-
eled with L in the program and a special L symbol, which
represents the absence of a data flow fact. An environment is
a function from D to L, where L was introduced in Sec-
tion 5.1. The set of environments is E. A join operation t is
defined on E such that, for any e1; e2 2 E and d 2 D,
ðe1 t e2ÞðdÞ ¼ e1ðdÞ [e2ðdÞ. Environment transformers are
used to model the influence of program statements on the
values of variables. They are functions from E to E. For
example, before a program statement s, the values associ-
ated with each variable of interest are given by environment
e1 2 E. Statement s transforms e1 to a new environment
e2 2 E, which is modeled by an environment transformer t
such that e2 ¼ tðe1Þ. The IDE framework requires that envi-
ronment transformers be distributive. An environment trans-
former t is distributive if, for every e1; e2; . . . 2 E and for
any d 2 D, ðtðtieiÞÞðdÞ ¼ [iðtðeiÞÞðdÞ.

6.2 The Pointwise Representation of Environment
Transformers

It can be shown that any environment transformer t can
be written in terms of a pointwise representation Rt,

1 which

is a function from ðD [fLgÞ � ðD [fLgÞ to LL. The
pointwise representation is useful because it allows for
easy specification of transformers. The pointwise repre-
sentation answers the following question: given two sym-
bols d0 and d, how does the value associated with d0

contribute to the value of d? More specifically, for any
environment transformer t, for all e 2 EnvðD;LÞ and
d 2 D, we have

tðeÞðdÞ ¼ RtðL; dÞð?Þ [[d02DRtðd0; dÞðeðd0ÞÞð Þ: (7)

In Section 5.2, we have used the pointwise representation,
and more specifically we have defined functions in LL that
model the composite constant propagation problem. Please
refer to Section 5.2 for examples of pointwise representa-
tions of transformers.

We now state a result that links the distributivity of
the functions in LL to the distributivity of environment
transformers.

1. The exact expression of Rt is not useful for this section. Interested
readers are referred to [38].

OCTEAU ETAL.: COMPOSITE CONSTANT PROPAGATION AND ITS APPLICATION TO ANDROID PROGRAM ANALYSIS 1005

Definition 2. We say that a function Rt : ðD [fLgÞ � ðD [
fLgÞ ! LL is codistributive if all elements of its range are
distributive functions from L to L.

Proposition 2. If Rt: ðD [fLgÞ � ðD [fLgÞ ! LL is codis-
tributive, then t defined as in Equation (7) is a distributive
environment transformer.

Proof. Let e1; e2; . . . 2 EnvðD;LÞ and Rt : ðD [fLgÞ� ðD [
fLgÞ ! LL codistributive. Using Equation (7):

tðtieiÞðdÞ ¼ RtðL; dÞð?Þ [[d02DRtðd0; dÞððtieiÞðd0ÞÞð Þ
¼ RtðL; dÞð?Þ [[d02DRtðd0; dÞð[iðeiðd0ÞÞÞð Þ

by definition of ðtieiÞðd0Þ. Since Rtðd0; dÞ is distribu-
tive [38], we have:

tðtieiÞðdÞ ¼ RtðL; dÞð?Þ [[d02Dð[iRtðd0; dÞðeiðd0ÞÞð Þ
Using the commutativity of the [operator, we get:

tðtieiÞðdÞ ¼ RtðL; dÞð?Þ [[ið[d02DRtðd0; dÞðeiðd0ÞÞð Þ
¼ [i RtðL; dÞð?Þ [ð[d02DRtðd0; dÞðeiðd0ÞÞð Þ
¼ [itðeiÞðdÞ

by using the idempotence and the commutativity of [
and Equation (7). tu
We define environment transformers by their pointwise

representation Rt using functions in F . Examples of envi-
ronment transformers with their representation are shown
in Fig. 6. For example, for statement intent = new Intent(),
the representation Rt for the corresponding transformer is
defined as:

Rtðd0; dÞ ¼
idL if ðd0; dÞ ¼ ðL;LÞ

or ðd0; dÞ ¼ ðsrc; srcÞ
initfðnull;? ;null;nullÞg if ðd0; dÞ ¼ ðintent;LÞ
V otherwise:

8>><
>>:

This function describes the relationships between symbols
before the statement (d) with symbols after the statement
(d0). The first case (idL) means that we are propagating the
values of L (the empty data flow fact) and src without any
changes. The second case means that we are creating a new
data flow fact intent, as indicated by the edge between L
and intent. We are associating function initfðnull;? ;null;nullÞg
with that edge. Since the value associated with L is ?, this
informally means that the contribution of L to the final
value of intent is initfðnull;? ;null;nullÞgð?Þ ¼ fðnull;? ; null;
nullÞg (see Equation (7)). The final case (V) means that there
exists no relationship between any other symbol.

Transformers are defined that way for all statements of
interest in the program.

Proposition 3. All elements of F are distributive functions.

The proof of this proposition is trivial, given the defini-
tion of the functions in F . Since all elements in F are distrib-
utive, according to Proposition 2, the resulting environment
transformers are distributive. It follows that the data flow
problem can be solved using existing algorithms from [38].

6.3 Generating Functions in F

Since producing environment transformers from functions
in F is trivial, this section addresses how the COAL solver
builds elements of F from COAL specifications. Algorithm 1
is used by the COAL solver to generate a function in F from
a statement and a modifier specification for the statement. It
computes functions in F for each argument and composes
them (recall from Proposition 1 that F is closed under com-
position). A modifier argument arg has several attributes: (i)
an operation op, which is performed by the modifier
method, (ii) an argument number number, which indicates
the position of the arguments of interest in the modifier
method, (iii) an argument type type, which can be declared
as part of the field declaration (see Line 2 of Fig. 2c) and (iv)
field, the index (or the name) of the modified field.

Algorithm 1. Generate Functions in F from COAL
Modifiers

1: procedure GENERATEFUNCTION(modifier, statement)
2: result :¼ idL
3: for all arguments arg inmodifier:args do
4: values :¼ null
5: if arg:number != null then
6: values :¼ GETARGUMENTVALUES(statement,

arg:number, arg:type)
7: arg function :¼ null
8: if values 6¼ null then
9: for all argument values value in values do
10: current :¼ BUILDFUNCINF(arg:op, value, arg:field)
11: if arg function ¼ null then
12: arg function ¼ current
13: else
14: arg function ¼ arg function [current
15: else
16: arg function :¼ BUILDFUNCINF(arg:op, null, arg:field)
17: result :¼ result � arg function
18: return result

We assume the existence of a procedure GETARGUMENT-

VALUES, which computes the possible values of a method
argument, given an invoke statement, an argument number
and an argument type. For most value types, this procedure
simply traverses the interprocedural control flow graph
starting at the method call looking for assignments to the
variable that is used as an invocation argument. For string
arguments, we use the analysis described in Section 7.1.
Note that the argument type is needed by the COAL solver
to select the argument analysis that should be used. We also
assume that there is a procedure BUILDFUNCINF that gener-
ates a function in F given an operation, an argument value
and a field. In the interest of space, we only summarize its

Fig. 6. Transformers for statements from Fig. 2b.

1006 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 11, NOVEMBER 2016

main steps. It starts by generating a field transformer f

using the operation and the argument value. The field index
(or name) allows the creation of a function l 2 L of the
form: l ¼ id� � � � � id� f� id� � � � � id. The correspond-
ing function in F is simply flg. When a modifier method
argument may have several values resulting in possible
functions f1; . . . ; fn, we compute f1 [. . . [fn (Line 14).

To illustrate this procedure, let us consider Line 11 of
Fig. 2b. The COAL solver determines that this is a modifier
with two arguments (see Fig. 2c Lines 8-10). Considering the
first argument 0: replace data and given the fact that data
is a string field, the GETARGUMENTVALUES procedure finds
that the method argument has value file:///foo.jpg.
Since a replace operation is requested, the BUILDFUNCINF
procedure generates field transformer ffile:===foo:jpg. Using
the fact that data is the third field (Line 2 of Fig. 2c), it gener-
ates function

fid� id� ffile:===foo:jpg � idg: (8)

Considering argument 1: replace mimeType, the solver
finds that there are two possible values for the mimeType
variable. Thus, Lines 9-14 of the algorithm yield function

fid� id� id� fimage=jpg; id� id� id� fimage=�g; (9)

where Line 14 utilizes the definition of the [operator on F
from Section 5. Finally, Line 17 of Algorithm 1 composes the
two functions given by Equations (8) and (9), which yields
the function given by Equation (5).

6.4 Fixed Point Iteration

Let us consider method sendMessageðÞ from Fig. 2b. So far,
we have assumed that the value of the Uri uri at Line 8 of
Fig. 2c is available when we generate field transformers for
intent. In reality, it is not initially available, because when
we solve the problem for the first time, values for intent
and uri are computed in the same iteration. Thus, in order
to fully resolve all values, we run several iterations of the
COAL solver. For example, in the first iteration, the trans-
former that is generated for statement intent.setData(uri) is

fintent;1 � fintent;2 � fintent;3 � fintent;4

� � ¼
id� id� id� furi;1

� �
;

where furi;1 is a transformer that indicates that the value of
the data field of intent refers to the first field of Uri uri. We
initially start with fintent;i and furi;1 mapping to v, for

1 � i � 4. We then iterate until a fixed point is reached for
fintent;i and furi;1. The same process allows the solver to

resolve the value of intent at Line 11 of Fig. 2b by utilizing
the value of uri computed in the previous iteration.

7 APPLICATION TO ANDROID ICC

As an application of the COAL language and solver, we
built IC3 (Inter-Component Communication analysis with
COAL), an ICC inference tool that is based on COAL speci-
fications. The main ICC classes are Intents, Intent Filters
and URIs. For completeness we also model the Component
Name, Bundle, Pending Intent and Uri Builder classes since
they are referenced by the main class types.

Recall from Fig. 3 that, as a prerequisite to the MVC con-
stant propagation, it is necessary to generate an intermedi-
ate representation (IR) that is suitable to generate an ICFG.
The COAL solver is currently implemented using the Soot
framework [41] and the Heros IDE solver [3]. Soot converts
Java bytecode to an internal IR that is recognized by its
Spark [25] pointer analysis and call graph construction
module, which is used to build an ICFG. However, Android
applications present additional challenges. First, they are
distributed in a platform-specific bytecode format. We
therefore preprocess them with Dare [33], which converts
Android to Java bytecode. Second, Android applications
are composed of components that may be started in an arbi-
trary order. Additionally, they are event-based programs
that declare callbacks that may be called in an arbitrary
order. In order to address this challenge in a conservative
manner, we adopt the call graph construction procedure
from FlowDroid [1], which generates a wrapper entry point
method that simulates the application lifecycle and the arbi-
trary event and component call order.

The COAL solver takes aliasing into account in a way
similar to the standard idea of weak updates [7]. When a
method modifies a variable o1 that is a possible alias for
another object o2, our analysis generates two values for o2.
One of them takes the call into account and the other one
does not. The one that does not models the case where the
alias analysis results in a false positive (i.e., detecting that a
value may point to a certain heap location even though it
does not).

7.1 String Analysis

Strings are ubiquitous in Android applications. Many argu-
ments to ICC methods are strings. Because of the limited set
of predefined Intent fields (e.g., default action and category
strings), in many cases, the value of string fields is deter-
mined by a finite set of constants. However, the way these
constants are transferred or combined is not trivial and a
string analysis is required to determine the set of possible
values that a given variable can have. Our string analysis
determines a safe overapproximation of such sets. It was
inspired by JSA [9], although our analysis is highly custom-
ized for the purposes of Android. Conversely, JSA is more
generic but significantly slower for our purposes.

Our string analysis is flow-sensitive and interprocedural.
It works in two stages: constraint generation and constraint
solving. Constraint generation simply gathers the dataflow
facts for string variables. Constraint solving determines reg-
ular sets (described as regular expressions) that satisfy the
constraints.

Constraint generation. In the first stage we generate con-
straints for all string operations. Our goal is to have a repre-
sentation that can be used either by a constraint solver or by
abstract interpretation. This is why the constraints are a
symbolic representation of the original program operations.
Our analysis relies on the flow-sensitive use-def analysis
provided by the Soot framework. We tried to use the Single
Static Assignment (SSA) intermediate program representa-
tion, where local variables are defined exactly once [12], but
Soot’s SSA conversion was not robust enough to handle the
code translated from Dalvik. Nevertheless, for simplicity in
what follows we present the analysis as if SSA form was

OCTEAU ETAL.: COMPOSITE CONSTANT PROPAGATION AND ITS APPLICATION TO ANDROID PROGRAM ANALYSIS 1007

used, adding clarifications when the distinction is relevant.
We introduce the following symbolic values:

1) For each SSA variable r we introduce a symbol r
which represents r’s set of possible values.

2) For each function foo, ret[foo] represents the set
of values returned by foo.

3) For each function foo, arg[foo, n] represents the
set of values for the nth argument of foo.

4) For each class C and field f, C:f represents the set of
values for field f in objects of type C.

We perform a whole-program analysis by simply travers-
ing all instructions in all reachable functions and gathering
the corresponding constraints. For instance, an assignment
to an SSA variable x ¼ y generates the constraint x ¼ y. If
the assignment is x ¼ fooðy; zÞ we generate three con-
straints: one for the assignment x ¼ callðfoo; y; zÞ, and one
for each argument arg[foo,1] 	 y, and arg[foo,2] 	 z.
A phi statement x ¼ fðy; zÞ generates a union constraint
x ¼ union ðy; zÞ. Here union ðy; zÞ is the set union, y [z. In
reality, without an SSA form, for each variable x and each
location l where x is assigned we introduce a symbol xl,
which represents the set of values of x at l. Additionally,
consider a location l and a variable x which is used at loca-
tion l, such that x has multiple reaching definitions from
locations l1; l2; The set of values x may have when used
at location l, is represented by union ðxl1; xl2; . . .Þ.

A return x; statement inside function bar generates the
constraint ret[bar] 	 x, and if bar has one more return
statement return y; we group all the constraints for the
bar’s return statements into a single one, ret[bar] ¼ union
ðy; zÞ. Similarly, by the end of thewhole-program analysis, we
group all the constraints for arguments andfields usingunion
constraints. For instance, the first argument of foo becomes
constrained by arg[foo,1]¼ union ðy; . . .Þ. Symbolic values
that represent fields, or function arguments and results, such
as arg[foo,1] ret[bar], represent conservative, context
insensitive solutions for the corresponding sets of values.
However, we use the constraint graph in a context sensitive
analysis which propagates more precise values for function
arguments and results, and uses the context insensitive infor-
mation onlywhenwidening is required.

As an example, consider the program in Fig. 7a, and its
simplified SSA representation in Fig. 7b. We traverse the
instructions in Fig. 7b, and for each one we generate the cor-
responding constraints. Fig. 7c shows how the constraints
are added, step by step. When we finish processing bar, we

group the two inclusion constrains on the return value with
a single union constraint ret[bar] ¼ union ðr0; r5Þ. Note
that at this point we can not do the same replacement for
the arguments of foo, because foo may be called in other
functions. At the end of the whole-program analysis we
eliminate all inclusion constraints with the same left oper-
and and replace them by a union constraint. For instance,
we would replace arg[foo,1] 	 y1; . . . ; arg[foo,1] 	 yn,
with arg[foo,1] ¼ union fy1; . . . ; yng.

Certain calls result in string concatenation, and because
of its importance we consider concatenation as an operator
allowed in constraints. The drawback is that we have to
model those library calls that can yield string concatena-
tion. However, in Android applications, it suffices to
model just the String and StringBuilder classes to cover
the majority of string operations. In such cases, a high level
Java code x ¼ yþ z would generate the intermediate
code x ¼ y:appendðzÞ, for which we insert the constraint
x ¼ catðy; zÞ. The expression catðy; zÞ represents the set of
elements of the form wywz with wy 2 y, and wz 2 z. If we
are unable to model the right hand of an assignment
x ¼ . . ., then we generate x ¼ ?. The meaning of ? is all
strings, i.e :� in terms of a regular expression.

Fig. 9 shows the constraint language. The values can
describe real variables (such as r1 or r2 in Fig. 7) or an
abstract class of values (such as ret[bar] which represents
the set of values that bar could return). Note that our analy-
sis is field sensitive, but not object sensitive, a restriction
that can be removed in the future.

We stay close to the semantics of the original program,
and do not commit to a particular class of languages (such
as context free, or regular) to allow more flexibility in pick-
ing an appropriate solver.

When modeling string operations we are faced with the
following alias problem. Consider the example in Fig. 8a,
where s1 and s2 are two variables of type StringBuilder.
The statement s2=s1.append(“123”) makes s1 and s2
aliases, therefore modifications of one of them also modify
the other. However this is not captured by the def-use in
Soot. As a workaround to this problem, we replace s2 with
s1 in the left hand side of the assignment, and we replace
the uses of s2 from the original definition, with s1, as shown
in Fig. 8b. We apply the workaround at all function calls
known to introduce aliases (Fig. 8c). In one corner case, we
cannot apply our changes without additional care. This hap-
pens, for instance, if variable s2 from Fig. 8a is also defined
on another branch and if both definitions reach a common

Fig. 7. Running example.

1008 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 11, NOVEMBER 2016

use of s2. This is another case where the SSA representation
would enable an easier completion of our workaround. Our
changes would break SSA’s unique definition requirement
(such as s1 being defined twice in Fig. 8b), but this would
not be a problem since we could restore valid SSA. How-
ever, because we lack SSA, and because the code structure
that triggers this corner case is seldom found in typical
Android applications, we merely detect this corner case and
issue a warning. In our experiments, only one application
triggered this warning.

The set of constraints induce a graph on the set of values.
For instance, in Fig. 7c the constraint r5 ¼ unionðr3; r4Þ rep-
resents a dependency between r5 and r3, and also between r5

and r4. These dependencies form a flow graph and the nodes
with outgoing edges can be viewed as nonterminals in a
context-free grammar augmented with operation produc-
tions (see [9]).

Constraint solving. In the second stage, a solver uses the
constraints to answer queries about variable values. As a
proof of concept, we implemented a simple solver that
given a variable x produces a regular expression that over-
approximates the set of values that x can take. It works by
finding the constraint associated with x and by traversing
the flow graph and interpreting the nodes.

Observe that if the flow graph rooted at a given node N
has no cycles, and if there are no call operations, then the
flow graph under that node actually describes a finite lan-
guage. In the general case, the flow graph rooted in a given
node N can be viewed as a program that computes the set
associated with node N . We evaluate this program, and
avoid non-termination by detecting cycles using a stack of
nodes: when we are about to evaluate a node that is

already on the stack, perform widening and consider its
value to be .* (that is, ?). Similarly, we widen to .* when
we detect calls to functions outside the analysis (for which
we have not generated constraints). Although our widen-
ing method may be less accurate than that in [9], our sim-
ple solver is faster and can still be more accurate because
of context sensitivity. Assume that the function foo used by
r3 ¼ fooðr1; r2Þ in Fig. 7 is:

1 String foo(String p1, String p2) {

2 String end = “”;

3 for(int i=0; i<10; ++i)

4 end = “!”+end;

5 return p1+p2+end;

6 }

Our analysis is able to find a solution r3 ¼
f111122j111122!:�g, even if foo is called in many other con-
texts, while the method in [9] loses precision and does not
obtain the 111122 prefix.

7.2 Evaluation

The evaluation of our approach was aimed at answering
four central questions:

Q1: Does the composite propagation lead to fewer values
than considering fields to be separate variables?

Q2: Can IC3 precisely infer field values of ICC objects?
Q3: As an application of our analysis, how precisely can

ICC messages be matched with their targets?
Q4: Are the computational costs of IC3 feasible in practice?
The answer to these questions determines how effec-

tively our analysis can be used as the basis of inter-
component analyses. Highlights of our evaluation are:

� For each code location that may send more than one
ICC value, the composite constant propagation finds
on average 19 percent fewer values than the tradi-
tional constant propagation. Overall, composite con-
stant propagation reduces the number of values
found by 99.7 percent by avoiding the combinatorial
explosion that sometimes occurs when fields are con-
sidered as separate variables.

� IC3 infers precise field values for 84 percent of ICC
values in a corpus of 489 Android applications. Epicc
can only infer 68 percent. This is a significant
increase in precision.

� When matching components that may communicate
with one another, specifications from IC3 lead to 78
percent fewer links between message-sending loca-
tions and potential recipients than the current state-
of-the-art. This implies a significant decrease in the
number of unfeasible inter-component paths in client
analyses.

Fig. 8. Alias workaround example.

Fig. 9. Constraint language.

OCTEAU ETAL.: COMPOSITE CONSTANT PROPAGATION AND ITS APPLICATION TO ANDROID PROGRAM ANALYSIS 1009

� On average, our analysis takes two minutes per
application. This makes it feasible in practice to use
our analysis as the first step of inter-component
analyses.

For performance reasons, we generally do not allow the
constant propagation to analyze the Android framework
code. The only exception is when a framework class
may create or modify ICC objects, which only occurs in a
few classes of the framework. In the few cases where ICC
method arguments are not strings of characters (e.g., integer
arguments), we use a simple analysis that looks for defini-
tions of constant values for that argument. It simply traver-
ses the interprocedural control flow graph starting at the
method call, keeping track of all possible values. When a
constant value cannot be found, a special v value is conser-
vatively returned.

We performed our experiments on a corpus of 500 appli-
cations. They were randomly selected from a set of 453,525
applications downloaded from the Google Play store
between January and September 2013 (data set described
in [13]). Some applications could not be processed because
of errors caused by insufficient memory or timeout, so we
report numbers for 489 applications.

Size of value sets. Recall that the COAL solver takes into
account field correlations to avoid considering object values
with unfeasible field combinations. In order to measure the
number of unfeasible values avoided by the composite con-
stant propagation we compared the number of ICC values
computed by our approach at message-passing code loca-
tions with the number of values that would be inferred if
field correlations had not been taken into account. We con-
sidered all 7,103 message-sending locations. Overall, the
composite constant propagation found 14,537 possible ICC
values whereas traditional constant propagation would
have found 4,807,771 values. This constitutes a 99.7 percent
decrease in the total number of potential values.

Looking more closely at the distribution of the values, we
found that in 5,766 of the message-passing locations, there
was only a single possible ICC values. This implies that
the sets of values are identical whether the field correlations
are considered or not. In the remaining 1,193 cases, we
observed that on average the composite constant propaga-
tion led to a reduction of over 19 percent of the number of
potential values. For each message-sending location, we
denote by Nc the number of ICC values inferred by compos-
ite constant propagation and by Ns the number of values
that would be inferred by considering the fields to be sepa-

rate. Fig. 10 shows the ratio Nc
Ns

for all 1,193 locations that

send more than one potential ICC value. We notice that
the reduction in unfeasible values is highly variable across
code locations. In particular, for 87 values the number of

potential values was reduced by over 90 percent, avoiding
the combinatorial explosion that occurred when fields were
considered as separate variables. This indicates that com-
posite constant propagation can effectively reduce the num-
ber of unfeasible values in cases where multiple values may
occur, thereby improving overall analysis precision.

Precision of field values. We first measured the precision of
the fields of the ICC values inferred by IC3 at program
points of interest (i.e., sending a message, or programmati-
cally registering a component with an Intent Filter). We
counted the number of ICC values inferred by IC3 and
Epicc [35] for which no field value used for Intent or URI
resolution is completely unknown (e.g., a .* string value).
We modified Epicc such that it used the same entry point
construction procedure from [1]. The precision results are
presented in Table 1. The third line shows the results for
Intents and Intent Filters, whereas the fourth line shows sta-
tistics for URIs. The value count column shows the total
number of ICC objects that were detected. The third and
fourth columns present the number of ICC values discov-
ered by Epicc and by IC3 that only have precise (e.g., not
equal to .*) field values. The fifth and sixth columns show
the number of imprecise values detected by each tool.
Finally, the missing columns show the number of locations
where an ICC value was missed by either tool.

We observe that the precision of the values inferred by
IC3 for Intents, Intent Filters and URIs was high, with 84
percent of values being detected accurately by our tool.
Epicc, on the other hand, could only precisely detect 66 per-
cent. Of the 1,129 Intent and Filter values that IC3 detected
precisely but Epicc did not, 656 were due to the presence of
URI data in Intent values, which is not handled by Epicc.
In 23 cases, Epicc missed a value that IC3 did not. The
remaining 269 cases that were precisely detected by IC3 and
not by Epicc were due to the more powerful string analysis.
There was also a clear difference in the case of URIs, with
IC3 precisely determining 430 values, compared to 249 for

Fig. 10. Ratio Nc
Ns

for message-sending locations with multiple ICC values.

TABLE 1
ICC Value Field Precision Results

ICC values with precise fields ICC values with imprecise fields Missing ICC values

Value count Epicc IC3 Epicc IC3 Epicc IC3

Intents & Filters 6,474 4,607 (71%) 5,555 (86%) 1,764 (27%) 839 (12%) 103 (2%) 80 (1%)
URIs 629 249 (40%) 430 (68%) 195 (31%) 96 (15%) 185 (29%) 103 (16%)

Total 7,103 4,856 (68%) 5,985 (84%) 1,959 (28%) 935 (13%) 288 (4%) 183 (3%)

1010 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 11, NOVEMBER 2016

Epicc. That is because Epicc does not include a thorough
model for URIs. In particular, a number of methods refer to
other modeled objects. Since this is handled in an ad hoc
manner in Epicc, good coverage of these methods cannot be
achieved, resulting in a lot of missed values. On the other
hand, using COAL specifications, IC3 achieves much better
coverage of URI methods. In particular, references to mod-
eled values are handled in a principled and generic manner.
Finally, IC3 detected 99 fewer URI values imprecisely than
Epicc, thanks to our new string analysis.

There are several reasons why IC3 missed 80 ICC values.
First, some API callback methods have Intent or URI argu-
ments that cannot be known statically. For example, method
onReceiveðÞ is a Broadcast Receiver callback that is called
upon reception of an Intent. The received Intent is passed as
an argument to that method by the framework upon activa-
tion of the Receiver. The value of that Intent is in general
impossible to determine statically. We found 31 such cases.
Another related case was when URIs were extracted from
Intents that were callback arguments with the getDataðÞ
method, before being used to address Content Providers.
Another cause for missed ICC values was when Intents
were extracted from containers such as sets or lists. We will
investigate handling these by tracking the values of these
containers in future work. We note that handling containers
is challenging, especially if tracking array indices is desired.
Finally, we found a few pathological cases where a call to
an interface or abstract method returning an Intent was not
resolved to the proper possible subtypes by the call graph
construction procedure.

In the 935 cases where imprecise values were inferred,
the arguments to ICC API methods could not be deter-
mined. Some cases are not yet handled by our argument
analyses (e.g., integer fields and string array fields), while
other cases cannot be determined statically (e.g., sequences
of complex string operations). We will continue investigat-
ing the cases that can be resolved while keeping good
performance.

Component matching. As an application of inferring ICC
values, we matched the computed Intents with potential tar-
get components for the 489 applications. This is a funda-
mental application of the ICC analysis, since the matching is
necessary for any inter-component analysis. Matching pre-
cision determines the precision of the overall analysis. Its
influence on analysis precision is similar to the influence of
the call graph construction process in interprocedural pro-
gram analyses: an imprecise call graph results in an overall
imprecise analysis.

We implemented a matching process that was modeled
after the Android Intent resolution process. We performed
the matching using both the values computed by IC3 and
those calculated by Epicc. Matching Intent-sending pro-
gram locations with potential target components using val-
ues output by IC3 produced 42,238 links. In contrast, the
matching that used Epicc values yielded 192,662 links.
When performing inter-component analysis, fewer potential
links imply fewer false positives (since the ICC value com-
putation and matching are conservative) [32]. The 78 per-
cent reduction in potential targets is a very significant gain
in precision. The reason why a 16 percent gain in ICC value
precision resulted in a 78 percent gain in matching precision

is that imprecise ICC values often cause an explosion of the
number of potential links. For example, when the action of
an Intent is not known, the matching process conservatively
matches it with all Intent Filter action values.

Performance. Processing all the applications took 60,502
seconds using our tool, or slightly less than 17 hours of com-
pute time. That is about 123 seconds per application on
average. The processing time was dominated by the IDE
problem solver and the string solver, taking 85 percent of
the time overall. The second most time-consuming function
was the entry point building procedure of [1], taking 11 per-
cent of the total time. Soot analyses (class loading, type
inference, final call graph construction, etc.) took 2 percent
of the time. Other parts of the analysis (e.g., COAL model
parsing, result generation) took 2 percent of the total time.
We did not find any clear trend describing how running
time grows with size parameters of the input program. We
leave this matter for future work.

8 DISCUSSION

Writing COAL specifications requires some effort, which
could be seen as a limitation. However, the effort to write a
specification is much less than the effort required to pro-
duce full data flow models (including semilattices and data
flow functions) for each object, as it was done in Epicc [35].
We have also found that it is less prone to errors, since it is
simpler to verify COAL specifications than it is to check the
correctness of complex flow functions and semilattices. In
addition, the data flow model used by the COAL solver can
be changed without having to rewrite all the COAL specifi-
cations that have been written so far. In particular, we are
using an IDE model [38], but it is possible to use reductions
to other types of problems [37]. Finally, addressing cases
where modeled objects reference other modeled objects in a
principled way has allowed us to model complex inter-
object relationships such as the one between Android Uri,
UriBuilder and Intent. For example, at Line 8 of Fig. 2b, data
flows from the uri variable to the intent object. The COAL
language enables seamless support for such flows by pro-
viding the constructs demonstrated at Line 12 of Fig. 2c.
The COAL solver supports these constructs with the fixed
point iteration described in Section 6.4.

We estimate that writing specifications for all modifiers
and queries for Android took us approximately five hours
using the documentation for the classes involved. On the
other hand, writing ad hoc composite constant propagation
models for Epicc took longer than eight hours for each mod-
eled object, with an incomplete coverage. In order to make
writing specifications more effortless, we are looking into a
semi-automated inference approach. We believe that COAL
elements such as the list of fields, many modifiers and sour-
ces as well as queries can be inferred automatically.

We have successfully applied composite constant propa-
gation to Android ICC, but it can also be applied to other
problems where object values have to be inferred. In order
to ensure that this is the case, the COAL solver can be
extended by registering new COAL keywords for field
operations and field types. This enables support for addi-
tional operations beyond add, remove, replace and clear, as
well as for additional method argument analyses.

OCTEAU ETAL.: COMPOSITE CONSTANT PROPAGATION AND ITS APPLICATION TO ANDROID PROGRAM ANALYSIS 1011

In addition to the fields used for resolving their targets
(e.g., action and categories), Intents have an extras field, which
stores data of arbitrary types in the form of key-value pairs.
Since the values may have arbitrary types, IC3 does not
model them. However, since the keys are strings, IC3 propa-
gates them in a way similar to the categories field.

IC3 has the traditional limitations of static analysis on
Java. It does not handle native code or reflection. Some
approaches [4] exist that can handle reflection for Java pro-
grams and could be adapted for Android. Loops and recur-
sion are naturally handled for the operations that we
defined (i.e., add, remove, clear and replace) because
the corresponding field transformers are idempotent for
composition. Other operations (e.g., appending to a list)
would require carefully defining the composition of the cor-
responding field transformers.

9 RELATED WORK

Single-valued interprocedural constant propagation has
been studied in the past [6], [18], [29], [38]. Unlike our work,
for each constant these works seek to find a single value
that is common to all interprocedural paths. Multi-valued
constant propagation [2], [28] has also been studied. While
our constant propagation is also multi-valued, it propagates
composite types. As we explain in Section 3, it is possible to
simply consider fields to be separate, single variables. How-
ever, this approach limits the precision of the results.

We are not the first to consider tuples of values in the con-
text of static analysis. Several works have used tuples or vec-
tors to represents properties of sets of sets of variables [10],
[21], [22], keeping track of correlations between properties of
different variables. Our analysis is more restricted in that it
only handles correlations between object fields. However,
our goal is different: we aim to provide analysis designers
with a relatively easy-to-use layer of abstraction to statically
compute possible object values without having to write data
flow functions. This has enabled us to write a thorough
model of Android ICC with limited effort. We hope that it
will allow other analysis designers to quickly prototype
and run composite constant propagation analyses in various
contexts.

Analysis of Inter-Component Communication in
Android has been performed in past work. Dynamic analy-
sis has attempted to enforce security policies related to
ICC [5], [14]. Other work has performed inter-component
dynamic taint analysis [15]. Static analysis has also been
investigated. ComDroid [8] attempts to determine a limited
number of properties of Intents. Epicc [35] is the first work
that tried to determine most Intent attributes that are useful
for component matching. It performs some ad hoc compos-
ite constant propagation, which is considerably more com-
plex than writing COAL specifications. Another important
difference is how we deal with cases where modeled clas-
ses reference other modeled types. Epicc deals with them
in an ad hoc, class-specific manner. On the other hand, our
iterative algorithm described in Section 6.4 is completely
generic and can apply to all occurrences of modeled value
references. As a result, we can model all of ICC in Android.
However, like Epicc, our analysis is context-sensitive
and flow-sensitive. Apposcopy [17] uses static analysis as

the basis of a signature-based malware detection system.
The static analysis includes some ICC analysis limited to a
subset of the Intent fields. In particular, URI data is not
considered.

String analysis reasons about the set of values for string
variables. While much work has been performed in this
area [9], [19], [23], [30], [39], [42], JSA [9] is the closest to our
analysis. However, JSA seeks to model all string operations,
whereas we limit our analysis to the most common cases.
Additionally, while JSA performs its own pointer analysis,
we rely on the more efficient Spark [25] analysis, which is
already performed as part of the ICFG building process. As
a result, our analysis is much more efficient in the context of
Android ICC analysis. Initial tests with JSA showed proc-
essing times well over an hour for medium sized applica-
tions, which made the entire ICC analysis impractical.
Using a language of constraints that reflect the structure of
the program was also used in other domains, such as the
inference of reference immutability, in the Javari extension
of Java [36].

10 CONCLUSION

In this paper, we introduced the MVC constant propagation
problem, and we presented the COAL language and the
associated solver for MVC problems. We also developed
IC3, an Android ICC analysis tool that is based on a reduc-
tion to an MVC problem. As a part of IC3, we developed a
sound string analysis that offers an effective tradeoff of scal-
ability and precision. We achieved a much greater accuracy
in ICC inference than previous work. In the future we plan
to investigate more ways to improve accuracy, and to what
extent generating COAL specifications can be automated.
Finally, we will apply our IC3 work to design novel inter-
component analyses in Android.

ACKNOWLEDGMENTS

The authors thankMatthewDering forwriting the initial ver-
sion of the ICC matching program. They also thank William
Harris for comments provided during thewriting of this arti-
cle. This material is based upon work supported by National
Science Foundation Grants Nos. CNS-1064900, CNS-
1228700, CNS-1228620, and CNS-1219495. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation. This
research was also supported by a Google Faculty Research
Award. The material in this paper was presented in part at
the 37th International Conference on Software Engineering
(ICSE’15).

REFERENCES

[1] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise con-
text, flow, field, object-sensitive and lifecycle-aware taint analysis
for Android apps,” in Proc. 35th ACM SIGPLAN Conf. Program.
Lang. Design Implementation, 2014, pp. 259–269.

[2] G. Balakrishnan and T. Reps, “Analyzing memory accesses in x86
executables,” in Proc. 13th Int. Conf. Compiler Construction, 2004,
pp. 5–23.

[3] E. Bodden, “Inter-procedural data-flow analysis with ifds/ide
and soot,” in Proc. 1st ACM SIGPLAN Int. Workshop State Art Java
Program Anal., Jul. 2012, pp. 3–8.

1012 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 11, NOVEMBER 2016

[4] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and M. Mezini,
“Taming reflection: Aiding static analysis in the presence of reflec-
tion and custom class loaders,” in Proc. 33rd Int. Conf. Softw. Eng.,
2011, pp. 241–250.

[5] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and
B. Shastry, “Towards taming privilege-escalation attacks on
Android,” in Proc. 19th Annu. NDSS Symp., Feb. 2012.

[6] D. Callahan, K. D. Cooper, K. Kennedy, and L. Torczon,
“Interprocedural constant propagation,” in Proc. SIGPLAN Symp.
Compiler Construction, 1986, pp. 152–161.

[7] D. R. Chase, M. Wegman, and F. Kenneth Zadeck, “Analysis of
pointers and structures,” in Proc. ACM SIGPLAN Conf. Program.
Lang. Design Implementation, 1990, pp. 296–310.

[8] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing
inter-application communication in android,” in Proc. 9th Int.
Conf. Mobile Syst. Appl. Serv., 2011, pp. 239–252.

[9] A. S. Christensen, A. Møller, and M. I. Schwartzbach, “Precise
analysis of string expressions,” in Proc. 10th Int. Conf. Static Anal.,
2003, pp. 1–18.

[10] P. Cousot and R. Cousot, “Automatic synthesis of optimal invari-
ant assertions: Mathematical foundations,” in Proc. Symp. Artif.
Intell. Program. Lang., 1977, pp. 1–12.

[11] X. Cui, D. Yu, P. Chan, L. C. K. Hui, S. M. Yiu, and S. Qing,
“Cochecker: Detecting capability and sensitive data leaks from
component chains in Android,” in Proc. 19th Australasian Conf. Inf.
Security Privacy, 2014, pp. 446–453.

[12] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. Kenneth
Zadeck, “Efficiently computing static single assignment form and
the control dependence graph,” ACM Trans. Program. Lang. Syst.,
vol. 13, no. 4, pp. 451–490, Oct. 1991.

[13] M. Dering and P. McDaniel, “Android market reconstruction and
analysis,” in Proc. Mil. Commun. Conf., 2014, pp. 300–305.

[14] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach,
“Quire: Lightweight provenance for smart phone operating sys-
tems,” in Proc. 20th USENIX Conf. Security, 2011, pp. 23–23.

[15] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: An information-flow tracking sys-
tem for realtime privacy monitoring on smartphones,” in Proc. 9th
USENIX Conf. Operating Syst. Design Implementation, 2010, pp. 1–6.

[16] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin,
“Permission re-delegation: Attacks and defenses,” in Proc. 20th
USENIX Conf. Security, 2011, pp. 22–22.

[17] Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy:
Semantics-based detection of Android malware through static
analysis,” in Proc. 22nd ACM SIGSOFT Int. Symp. Found. Softw.
Eng., 2014, pp. 576–587.

[18] D. Grove and L. Torczon, “Interprocedural constant propaga-
tion: A study of jump function implementation,” in Proc. ACM
SIGPLAN Conf. Program. Lang. Design Implementation, 1993,
pp. 90–99.

[19] P. Hooimeijer and W. Weimer, “A decision procedure for subset
constraints over regular languages,” in Proc. ACM SIGPLAN Conf.
Program. Lang. Design Implementation, 2009, pp. 188–198.

[20] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang, “Asdroid:
Detecting stealthy behaviors in Android applications by user
interface and program behavior contradiction,” in Proc. 36th Int.
Conf. Softw. Eng., 2014, pp. 1036–1046.

[21] N. D. Jones and S. S. Muchnick, “Complexity of flow analysis,
inductive assertion synthesis and a language due to Dijkstra,” in
Proc. 21st Annu. Symp. Found. Comput. Sci., 13–15 Oct. 1980,
pp. 185–190.

[22] N. D. Jones and S. S. Muchnick, “A flexible approach to interpro-
cedural data flow analysis and programs with recursive data
structures,” in Proc. 9th ACM SIGPLAN-SIGACT Symp. Principles
Program. Lang., 1982, pp. 66–74.

[23] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst,
“Hampi: A solver for string constraints,” in Proc. 18th Int. Symp.
Softw. Testing Anal., 2009, pp. 105–116.

[24] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “Android
taint flow analysis for app sets,” in Proc. 3rd ACM SIGPLAN Int.
Workshop State Art Java Program Anal., 2014, pp. 1–6.

[25] O. Lhot�ak and L. Hendren, “Scaling Java points-to analysis
using spark,” in Proc. 12th Int. Conf. Compiler Construction,
2003, pp. 153–169.

[26] L. Li, A. Bartel, T. Bissyande, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “IccTA:
Detecting inter-component privacy leaks in Android apps,” in
Proc. 37th Int. Conf. Softw. Eng., May 2015, pp. 280–291.

[27] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: Statically vetting
android apps for component hijacking vulnerabilities,” in Proc.
ACM Conf. Comput. Commun. Security, 2012, pp. 229–240.

[28] E. Merlo, J. F. Girard, L. Hendren, and R. De Mori, “Multi-valued
constant propagation for the reengineering of user interfaces,” in
Proc. Conf. Softw. Maintenance, Sep. 1993, pp. 120–129.

[29] R. Metzger and S. Stroud, “Interprocedural constant propagation:
An empirical study,” ACM Lett. Program. Lang. Syst., vol. 2, no. 1-
4, pp. 213–232, Mar. 1993.

[30] Y. Minamide, “Static approximation of dynamically generated
web pages,” in Proc. 14th Int. Conf. World Wide Web, 2005, pp. 432–
441.

[31] Trustlook News. (2013, Nov.). Emergency: Android in-app billing
verification bypass vulnerability [Online]. Available: http://blog.
trustlook.com/index.php/emergency-android-app-billing-
verification-bypass-vulnerability/

[32] D. Octeau, S. Jha, M. Dering, P. McDaniel, A. Bartel, L. Li, J. Klein,
and Y. Le Traon, “Combining static analysis with probabilistic
models to enable market-scale android inter-component analy-
sis,” in Proc. 43rd Annu. ACM SIGPLAN-SIGACT Symp. Principles
Program. Lang., 2016, pp. 469–484.

[33] D. Octeau, S. Jha, and P. McDaniel, “Retargeting android applica-
tions to Java bytecode,” in Proc. ACM SIGSOFT 20th Int. Symp.
Found. Softw. Eng., 2012, pp. 6:1–6:11.

[34] D. Octeau, D. Luchaup, M. Dering, S. Jha, and P. McDaniel,
“Composite constant propagation: Application to Android inter-
component communication analysis,” in Proc. 37th Int. Conf. Softw.
Eng. - Volume 1, 2015, pp. 77–88.

[35] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and
Y. Le Traon, “Effective inter-component communication mapping
in Android with epicc: An essential step towards holistic security
analysis,” in Proc. 22nd USENIX Conf. Security, 2013, pp. 543–558.

[36] J. Quinonez, M. S. Tschantz, and M. D. Ernst, “Inference of refer-
ence immutability,” in Proc. 22nd Eur. Conf. Object-Oriented Pro-
gram., 2008, pp. 616–641.

[37] T. Reps, S. Schwoon, S. Jha, and D. Melski, “Weighted pushdown
systems and their application to interprocedural dataflow analy-
sis,” Sci. Comput. Program., vol. 58, no. 1-2, pp. 206–263, 2005.

[38] M. Sagiv, T. Reps, and S. Horwitz, “Precise interprocedural data-
flow analysis with applications to constant propagation,” Theor.
Comput. Sci., vol. 167, no. 1-2, pp. 131–170, Oct. 1996.

[39] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and
D. Song, “A symbolic execution framework for Javascript,” in
Proc. IEEE Symp. Security Privacy, 2010, pp. 513–528.

[40] F. Shen, N. Vishnubhotla, C. Todarka, M. Arora, B. Dhandapani,
E. John Lehner, S. Y. Ko, and L. Ziarek, “Information flows as a
permission mechanism,” in Proc. 29th ACM/IEEE Int. Conf. Auto-
mated Softw. Eng., 2014, pp. 515–526.

[41] R. Vallee-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville, and
V. Sundaresan, “Optimizing Java bytecode using the soot frame-
work: Is it feasible?” in Proc. 9th Int. Conf. Compiler Construction,
2000, pp. 18–34.

[42] G. Wassermann and Z. Su, “Sound and precise analysis of web
applications for injection vulnerabilities,” in Proc. ACM SIGPLAN
Conf. Program. Lang. Design Implementation, 2007, pp. 32–41.

[43] F. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A precise and
general inter-component data flow analysis framework for secu-
rity vetting of Android apps,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Security, 2014, pp. 1329–1341.

[44] M. Zhang and H. Yin, “Appsealer: Automatic generation of
vulnerability-specific patches for preventing component hijacking
attacks in Android applications,” in Proc. 21th Annu. Netw. Distrib.
Syst. Security Symp., 2014.

OCTEAU ETAL.: COMPOSITE CONSTANT PROPAGATION AND ITS APPLICATION TO ANDROID PROGRAM ANALYSIS 1013

Damien Octeau received the BSc and master’s
degrees from Ecole Centrale de Lyon, France, in
2007 and 2010, respectively, and the MSc and
PhD degrees in computer science and engineer-
ing from the Pennsylvania State University, in
2010 and 2014, respectively. He was a research
associate with a joint appointment at the Depart-
ment of Computer Sciences at the University of
Wisconsin-Madison and at the Department of
Computer Science and Engineering at the Penn-
sylvania State University. He is currently at Goo-

gle in the area of mobile security. His research interests include
systems, mobile and software security, and program analysis. He is a
member of the IEEE.

Daniel Luchaup received the PhD degree in
computer science from the University of Wiscon-
sin, Madison in 2015. He spent a number of years
as a software engineer working on compilers and
software tools. He is interested in programming
languages, security, and software engineering.
He is curently a postdoctoral researcher at
CyLab, Carnegie Mellon University, working on
static analysis of binary code.

Somesh Jha received the BTech degree from the Indian Institute of
Technology, New Delhi in electrical engineering and the PhD degree in
computer science from Carnegie Mellon University in 1996. He is cur-
rently a professor in the Computer Sciences Department at the Univer-
sity of Wisconsin, Madison, which he joined in 2000. His work focuses
on analysis of security protocols, survivability analysis, intrusion detec-
tion, formal methods for security, and analyzing malicious code.
Recently, he has also worked on privacy-preserving protocols. He has
published more than 150 articles in highly refereed conferences and
prominent journals. He has received numerous best-paper awards. He
also received the US National Science Foundation career award
in 2005.

Patrick McDaniel received the PhD degree at
the University of Michigan. Prior to pursuing his
PhD, he was a software architect and a project
manager in the telecommunications industry.
He is a distinguished professor in the School of
Engineering and Computer Science at The Penn-
sylvania State University, codirector of the
Systems and Internet Infrastructure Security Lab-
oratory. He is also the program manager and the
lead scientist for the Army Research Laboratory’s
Cyber-Security Collaborative Research Alliance.

His research efforts centrally focus on a wide range of topics in security
and technical public policy. He a fellow of the IEEE and ACM.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1014 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 11, NOVEMBER 2016

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

