
Networking and Security
Research Center
Technical Report

NAS-TR-0140-2010

The ded Decompiler

Damien Octeau and William Enck and Patrick McDaniel

The Pennsylvania State University
344 IST Building
University Park, PA 16802 USA
http://nsrc.cse.psu.edu
c©2011 by the authors. All rights reserved.

23 September 2010 (updated 10 May 2011)

The ded Decompiler

Damien Octeau, William Enck and Patrick McDaniel
Systems and Internet Infrastructure Security (SIIS) Laboratory

Department of Computer Science and Engineering
The Pennsylvania State University

{octeau, enck, mcdaniel}@cse.psu.edu

ABSTRACT
Smartphone applications are frequently incompletely vet-
ted, poorly isolated, and installed by users without restraint.
Such behavior is fraught with peril: applications containing
malicious logic or critical vulnerabilities are likely to be iden-
tified only after substantial damage has already occurred.
Unfortunately, the limitations of application markets make
them a poor agent for certifying that applications are secure.
This paper presents a certification process that allows the
consumers of applications to validate applications’ security
directly. Built for the Android mobile phone platform, we
reverse engineer downloaded application images into appli-
cation source code and use static analysis to detect vulnera-
bilities. We develop and document a multi-stage process for
VM retargeting and code recovery. A study of the top 1,100
free Android market applications recovers source code for
over 95% of the 143 thousand class files containing over 12
million lines of code. A preliminary analysis of the recovered
source code identified over 3,100 potential vulnerabilities in-
volving a broad range of program features.

1. INTRODUCTION
The explosion of smartphones has led to a cottage industry

in phone applications. Developers use phone APIs to build
applications sold for as little as 99¢ through application mar-
kets. For example, the Apple iPhone [1] and Android [24]
platforms provide easy to use on-phone interfaces for brows-
ing literally thousands of applications. Users simply click
a button to download and install an application. For tech-
nical and logistical reasons, existing application markets do
little to detect malicious or vulnerable applications. Thus,
“caveat emptor ”–users have little information on which to
judge the trustworthiness of downloaded applications. Mis-
placed trust in these applications has left users’ phone data
and interfaces vulnerable to malicious code [26, 22].

In response to the limitations of current markets, recent
experimental systems have explored other means of vetting
smart phone applications. The Kirin system [23] inspects

the permissions associated with each application as it is in-
stalled. Based on a formal analysis of a program’s manifest,
applications that govern sensitive interfaces poorly or at-
tempt or request unsafe sets of permissions are rejected. In
contrast, the Saint system [34] seeks to regulate how smart-
phone applications share information by enforcing safe work-
flows between coordinated applications through mandatory
system policies. These techniques are limited in that focus
solely on the analysis of policy associated with a particular
phone and application. Identifying vulnerabilities or mali-
cious misuse of permissions is not within the scope of their
analysis. Thus, otherwise valid and correctly regulated ap-
plications may, for example, leak sensitive data [26].

This paper explores an alternative to current smart phone
application market analysis. In this model, platform devel-
opers, users, cellular providers, consumer protection agen-
cies, enterprises, professional software certification consul-
tants, and anyone else with an interest in the security of
the phones are free to certify the applications meet what-
ever security criteria they choose. This model changes the
nature of the market by altering the oft-broken incentives–
developers and markets will be encouraged to create secure
code and consumers will have the tools to detect and ul-
timately punish those who fail to do so. Users will “vote
with their feet” by avoiding developers with poor security
practices and gravitate towards those with good ones.

Our certification approach automates the reverse engi-
neering process by extracting the application source solely
from its installation image. Thereafter, static analysis tools
are used to detect potential vulnerabilities based on the eval-
uator’s criteria. Our novel ded tool retargets the Dalvik
virtual machine bytecode of candidate Android applications
into Java .class files. The application’s original Java source
code is then recovered from the retargeted bytecode using
existing Java tools (i.e., Soot [38]). Finally, commercial off-
the-shelf (COTS) static analysis tools are applied to validate
security related invariants defining safe phone behavior. Ap-
plications adhering to these invariants are deemed safe and
can be installed, and those that fail are rejected.

We make the following contributions in this paper:

• We develop an automated system for Android applica-
tion certification - We develop techniques for extract-
ing source code from installation images and leverage
existing analysis tools to measure the code’s adherence
to desired security policies. While we explore the use
of tools for analysis, the majority of the technical re-
search contributions focus on algorithms and tools for
retargeting Dalvik bytecode into valid class files.

1

Stage 1 Retargeting
(ded)

Optimization
(Soot)

Stage 2 Decompilation
(Soot)

Source Code Analysis
(Yasca)

Reject
Application

Success

Failure
Accept

Application

Figure 1: Install-time Application Certification

• We demonstrate the viability of the approach on ex-
isting market applications - Our study of the recent
top 1,100 free Android applications recovered 12 mil-
lion SLOC in 143 thousand Java classes–a 95% success
rate. The analysis tools flag over 3,100 locations within
code as potential vulnerabilities. A preliminary analy-
sis of the vulnerabilities shows that the flags represent
both common security failures and false-positives.

Note that the certification process is not a replacement for
policy analysis techniques such as Kirin or Saint, but is com-
plementary to them. Such tools inspect or regulate how ap-
plications can exercise system permissions. We aim to detect
vulnerable interfaces and code, as well as malicious behav-
iors within the applications themselves. Thus, prior tools
sought to analyze different aspects of the system than those
discussed here, the former relating to the application behav-
iors within the phone and the latter about the structure and
behaviors of the application itself.

The remainder of this paper proceeds as follows. Section 2
overviews our certification approach. Section 3 describes the
differences between Dalvik and Java bytecode, highlighting
the challenges that make retargeting difficult. Section 4 de-
scribes our retargeting algorithms. Section 5 uses existing
source code certification tools to analyze decompiled appli-
cations downloaded from the Android Market. Section 6
discusses related work. Section 7 concludes.

2. CERTIFICATION APPROACH
Illustrated in Figure 1, certification consists of two phases;

a) source code recovery via multi-stage decompilation, and
b) analysis of recovered code against safety-preserving invari-
ants. Java bytecode decompilation has been studied since
its introduction in the 1990s. Tools such as Mocha [10] date
back over a decade, with many other techniques being de-
veloped [35, 30, 29, 8, 7, 5] (see Section 6). Unfortunately,
there exists no functional tool for the Dalvik bytecode1. As
described in the next section, the JVM and DVM are vastly
different architectures, thus simple modification of existing
decompilers was not possible. Discussed in detail in the fol-
lowing sections, we developed ded2 for this purpose. Rather

1The undx and dex2jar tools attempt to decompile .dex
files. As discussed in Section 6 the tools are currently are
incapable of reliably recovering source code.
2While the dex decompiler (ded) only performs retargeting,

than directly recover Java source code from Dalvik bytecode,
ded retargets Dalvik .dex files to Java .class files. The ded
retargeting process yields complex, unoptimized Java byte-
code. We use the Soot framework [38] to optimize the ded
output, rendering Java bytecode from which the application
source code can be recovered. The .class files are then
decompiled using the optimized bytecode also using Soot.

The output of the decompilation process is the application
source code. At this stage, a certifying party can use any
code analysis tool at their disposal. In this paper, we use the
Yasca (Yet Another Source Code Analyzer [15]) tool with
the PMD plugin [11] to evaluate the recovered source code.
These tools search the code for poor coding practices, errors,
and exploitable code. In the study presented in Section 5,
with one exception, we use default tests that identify simple
security issues. However, the tools are designed to allow the
user to create custom analyses testing—thus allowing them
to enforce whatever security criteria they deem necessary
(within the limitations of the analysis process).

Note that the substance of the “security-preserving invari-
ants” validated via analysis is critical to certification; it de-
fines the security policy being enforced. This paper does
not attempt to identify what a good application policy is,
as it is a complex context-sensitive issue. We only seek to
demonstrate that the code recovery and subsequent analysis
process is viable. In practice, we expect that the kinds of
analysis needed to vet application code will be specific to the
platform, the users, and the security goals of the evaluator.

3. THE DALVIK VIRTUAL MACHINE
The Dalvik Virtual Machine (DVM) was designed for re-

source constrained Android mobile phones. While the soft-
ware run in the DVM is compiled from Java source code, its
bytecode and run-time environment differ substantially from
that for existing JVMs. We highlight several key differences
between the bytecode formats used by the JVM and DVM
as they relate to code recovery. We simplify the description
of the two formats for ease of exposition.

Application Structure - Java applications are composed of
one or more .class files, one file for each class. The JVM
loads the bytecode in the .class file associated with each
Java class as it is referenced using the Java class loader at
run time. Conversely, a Dalvik application consists of a sin-
gle .dex file containing all classes composing the application.
The entirety of the application is loaded when it is launched
by the DVM.

To support this, Android extends the compilation process:

Multiple .java
source files

Multiple .class
files Single .dex file

Java
compiler dx

Here, the Java compiler operates normally to produce a col-
lection of .class files. The Dalvik dx compiler then con-
sumes the classes, recompiles them to Dalvik bytecode, and
writes the resulting application into a single .dex file.

Figure 2 provides a conceptual view of the dx .class to
.dex compilation process. This process consists of the trans-
lation, reconstruction, and interpretation of three basic ele-
ments of the application: the constant pools, the class def-

it is named such for historical reasons. Together, ded and
Soot provide decompilation of Android applications.

2

Constant pool 1

Data 1

Constant pool 2

Data 2

Class 1

Class 2

Constant pool n

Data n

Class n

Constant pool

Header

Data

Class definition 1
Class definition 2

Class definition n

.class files .dex file

Class info 1

Class info 2

Class info n

Figure 2: dx compilation of Java classes to a DVM
application (simplified view).

initions, and the data segment. A constant pool describes,
not surprisingly, the constants used by a class. This includes
among other items references to other classes, method names
and numerical constants. The class definitions consist in
the basic information such as access flags and class names.
The data element contains the method code executed by the
target VM, as well as other information related to methods
(e.g., number of DVM registers used, local variable table and
operand stack sizes) and to class and instance variables.

Register architecture - The DVM is register-based, whereas
existing JVMs are stack-based. Java bytecode can assign
local variables to a local variable table before pushing them
onto an operand stack for manipulation by opcodes, but it
can also just work on the stack without explicitly storing
variables in the table. Dalvik bytecode assigns local vari-
ables to any of the 216 available registers. The Dalvik op-
codes directly manipulate registers, rather than accessing
elements on a program stack. For example, Figure 3 shows
how a typical operation (“add” function Figure 3(a)) is im-
plemented in Java (stack) versus Dalvik (register) virtual
machine. The Java bytecode shown in Figure 3(b) pushes
the local variables a and b onto the operand stack using the
iload opcode, and returns the result from the stack via the
ireturn opcode. By comparison, the Dalvik bytecode shown
in Figure 3(c) simply references the registers directly.

Instruction set - The Dalvik bytecode instruction set is sub-
stantially different than that of Java: 218 opcodes vs. 200,
respectively. The nature of the opcodes is very different:
for example, Java has tens of opcodes dedicated to push-
ing and pulling elements between the stack and local vari-
able table. Obviously the Dalvik bytecode instruction set
does not require any such opcodes. Moreover, as illustrated
in the example in Figure 3, Dalvik instructions tend to be
longer than Java instructions as they include the source and
destination registers (when needed). As a result, Dalvik ap-
plications require fewer instructions. Applications encoded
in Dalvik bytecode have on average 30% fewer instructions
than in Java, but have a 35% larger code size (bytes) [17].
This increased code size has limited impact on performance,
as the DVM reads instructions by units of two bytes.

(a) Source Code

(b) Java (stack) bytecode

(c) Dalvik (register) bytecode

Figure 3: Register vs. Stack Opcodes

Constant pool structure - Java applications necessarily repli-
cate elements in constant pools within the multiple .class

files, e.g., referrer and referent method names. The dx com-
piler attempts to reduce application size by eliminating much
of this replication. Dalvik uses a single large constant pool
that all classes simultaneously reference. Additionally, dx

eliminates some constants by inlining their values directly
into the bytecode. In practice, pool elements for integers,
long integers, and single and double precision floating-point
constants simply disappear as bytecode constants during the
transformation process.

Control flow Structure - Programmatic control flow ele-
ments such as loops, switch statements and exception han-
dlers are structured very differently by Dalvik and Java byte-
code. To simplify, Java bytecode structure loosely mirrors
the source code, whereas Dalvik bytecode does not. The
restructuring is likely performed to increase performance,
reduce code size, or address changes in the way the under-
lying architecture handles variable types and registers.

Ambiguous typing of primitive types - Java bytecode vari-
able assignments distinguish between integer (int) and single-
precision floating-point (float) constants and between long
integer (long) and double-precision floating-point (double)
constants. However, Dalvik constant assignments (int/float
and long/double) use the same opcodes for integers and
floats, e.g., the opcodes are untyped beyond specifying pre-
cision. This complicates decompilation of Dalvik bytecode
because the variable type is not indicated by its declaration.
Thus, the decompilation process must observe a variable cre-
ation and inspect its subsequent use to infer its type to cre-
ate accurate correct Java bytecode and constant pools. This
is a specific instance of a broad class of widely-studied type
inference problems. Note that an incorrect inference (and
thus type) may result in incorrect behavior (and analysis)
of the decompiled program.

Null references - The Dalvik bytecode does not specify a
null type, instead opting to use a zero value constant. Thus,
constant zero values present in the Dalvik bytecode have
ambiguous typing that must be recovered. The decompila-
tion process must recover the null type by inspecting the
variable’s use in situ. If the null type is not correctly re-
covered, the resulting bytecode can have illegal integer zero

3

(1) DEX Parsing

(2) Java .class
Conversion

(3) Java .class
Optimization

Missing Type
Inference

Constant Pool
Conversion

Method Code
Retargeting

CFG
Construction

Type Inference
Processing

Constant
 Identification

Constant Pool
Translation

Bytecode
Reorganization

Instruction Set
Translation

Figure 4: Dalvik bytecode retargeting

assignments to object references, and vice-versa.

Comparison of object references - The Java bytecode uses
typed opcodes for the comparison of object references (if_acmpeq
and if_acmpne) and for null comparison of object refer-
ences (ifnull and ifnonnull). The Dalvik bytecode uses
a more simplistic integer comparison for these purposes–
respectively the comparison between two integers and the
comparison of integer to zero. This requires the decom-
pilation process to recover types for integer comparisons.
Again, incorrect or missed inferences could result in illegal
bytecode, typing violations, and ultimately inaccurate de-
compiled source code.

4. APPLICATION RETARGETING
The initial stage of decompilation is to retarget the ap-

plication .dex file to Java classes. Figure 4 shows the three
central research challenges we faced in this process: recov-
ering typing information, translating the constant pool, and
retargeting the Dalvik bytecode. For brevity, we focus on
only the most challenging issues that relate to ded.

4.1 Type Inference
The first step in retargeting is to identify class and method

constants and variables. However, the Dalvik bytecode does
not always provide enough information to determine the
type of a variable or constant from its register declaration.
There are two generalized cases where variable types are am-
biguous: 1) constant and variable declaration only specifies
the variable width (e.g., 32 or 64 bits), but not whether it is
a float, integer, or null reference; and 2) comparison opera-
tors do not distinguish between integer and object reference
comparison (i.e., null reference checks).

Type inference has been widely studied [37]. The seminal
Hindley-Milner [31] algorithm provides the basis for type in-
ference algorithms used by many languages such as Haskell
and ML. Broadly speaking, the approach is to determine
unknown types by observing how variables are used in oper-
ations with known type operands. Other languages such as
OCAML [18] perform strong type inference and others like
Perl [39] employ weaker algorithms using similar techniques.

ded adopts the accepted approach: it infers register types
by observing how they are used in subsequent operations
with known type operands. Dalvik registers loosely corre-
spond to Java variables. Because Dalvik bytecode reuses
registers whose variables are no longer in scope, we must
evaluate the register type within its context of the method
control flow, i.e., inference must be path-sensitive. Note fur-
ther that ded type inference is also method-local. Because
the types of passed parameters and return values are identi-
fied by method signatures, there is no need to search outside
the declaring method.

There are three ways ded infers a register’s type. First,
any comparison of a variable or constant with a known type
exposes the type. Comparison of dissimilar types requires
type coercion in the original Java code, which is propagated
to the Dalvik bytecode. Hence any legal Dalvik comparison
must involve registers of the same type. Second, instruc-
tions such as add-int only operate on specific types, and
manifestly expose typing information. Third, any instruc-
tion that passes a register another method or assigns it to a
return value exposes the type via the method signature.

The ded type inference algorithm proceeds as follows. Af-
ter reconstructing the control flow graph, ded identifies any
ambiguous register declaration. For each such register, ded
walks the instructions in the control flow graph starting from
its declaration. Each branch of the control flow encoun-
tered is pushed onto a inference stack, e.g., ded performs
a depth-first search of the control flow graph looking for
type-exposing instructions. If a type-exposing instruction is
encountered, the variable is labeled and the process is com-
plete for that variable. There are three events that cause
a branch search to terminate: a) when the register is re-
assigned to another variable (e.g., a new declaration is en-
countered), b) when a return function is encountered (all
DVM methods terminate with a return), and c) when an
exception is thrown. After a branch is abandoned, another
is popped off the stack and the search continues. Lastly,
type information is forward propagated, modulo register re-
assignment, through the control flow graph from each reg-
ister declaration to all subsequent ambiguous uses. This
algorithm resolves all ambiguous primitive types, except for
one isolated case when all paths leading to a type ambiguous
instruction originate with ambiguous constant instructions
(e.g., all paths leading to an integer comparison originate
with registers assigned a constant zero). However, in this
case, the exact type does not impact decompilation, and we
can safely assign a default type (e.g., integer).

Note that it is sufficient to find any type-exposing instruc-
tion for a given register assignment. Any two instructions
that expose different types for the same register would rep-
resent illegal bytecode. If this were to occur, the primitive
type would be dependent on the path taken at run time, a
clear violation of Java’s type system.

4.2 Constant Pool Conversion
There are two central differences between .dex and .class

file constant pools: 1) Dalvik maintains a single constant
pool for the application and Java maintains one for each
class, and 2) Dalvik bytecode places primitive type constants
directly in the bytecode, whereas Java bytecode uses the
constant pool for most references. We convert constant pool
information in two steps, as shown in Figure 4.

The first step is to identify which constants are needed

4

tag = 10
class_index
name_and_type_index

CONSTANT_Methodref_info tag = 7
name_index

CONSTANT_Class_info

tag = 11
name_index
descriptor_index

CONSTANT_NameAndType_info
tag = 1
length
bytes

CONSTANT_Utf8_info

tag = 1
length
bytes

CONSTANT_Utf8_info

tag = 1
length
bytes

CONSTANT_Utf8_info

(a) Java constant pool entry

class_idx
proto_idx
name_idx

method_id_item
descriptor_idx
type_id_item

string_data_off
string_id_item

utf16_size
data

string_data_item

shorty_idx
return_type_idx
paramaters_off

proto_id_item

size
list

type_list

type_idx
type_item

string_data_off
string_id_item

string_data_off
string_id_item

descriptor_idx
type_id_item

utf16_size
data

string_data_item

utf16_size
data

string_data_item

string_data_off
string_id_item

descriptor_idx
type_id_item

utf16_size
data

string_data_item

string_data_off
string_id_item utf16_size

data

string_data_item

(b) Dalvik constant pool entry

Figure 5: Constant pool entry structure for a method reference

Table 1: Example Dalvik to Java bytecode translation rules

Dalvik Bytecode Instructions Java Bytecode Instructions Description
add-int d0, s0, s1 iload s′

0 Integer addition
iload s′

1

iadd

istore d′
0

invoke-virtual s0, . . . , sk, mr iload s′
0 Virtual method invocation with

move-result d0 . . . assigned return value.
iload s′

l

invokevirtual m′
r

istore d′
0

for a .class file. Constants include references to classes,
methods, and instance variables. ded traverses the byte-
code for each method in a class, noting such references. ded
also identifies all constant primitives specified in the Dalvik
bytecode. Here, ded notes the types determined during type
inference, described in Section 4.1.

Once ded identifies the constants required by a class, it
adds them to the target .class file. For primitive type
constants, new entries are created. For class, method, and
instance variable references, we must populate the Java con-
stant pool entry based on information available in the Dalvik
constant pool. The two constant pool entries differ in com-
plexity. Specifically, Dalvik constant pool entries use signif-
icantly more references to reduce memory overhead.

Figure 5 depicts the method entry constant in both Java
and Dalvik formats. Other constant pool entry types have
similar structures. Each box is a data structure. Index
entries (denoted as “idx” for the Dalvik format) are pointers
to a data structure. The Java method constant pool entry,
Figure 5(a), provides three strings: 1) the class name, 2) the
method name, and 3) a descriptor string representing the
argument and return types. The Dalvik method constant
pool entry, Figure 5(b), also contains these strings, but uses

more indirection. ded ignores Dalvik-specific entries such as
“shorty” strings used as simplified method descriptors.

4.3 Method Code Retargeting
The final stage of the retargeting process is the translation

of the method code. This is a two stage process, as shown
in Figure 4. First, we preprocess the bytecode to reorganize
structures that cannot be directly retargeted. Second, we
linearly translate DVM bytecode to the JVM.

The preprocessing phase considers multidimensional ar-
rays. Both Dalvik and Java use blocks of bytecode instruc-
tions to create multidimensional arrays; however, the in-
structions have different semantics and layout. ded reorders
and annotates the bytecode with array size and type infor-
mation to allow linear instruction translation.

The bytecode translation linearly processes each Dalvik
instruction. First, ded maps each referenced register to
a Java local variable table index. Second, ded performs
an instruction translation for each encountered Dalvik in-
struction. As Dalvik bytecode is more compact and takes
more arguments, one Dalvik instruction frequently expands
to multiple Java instructions. Third, ded patches the rela-
tive offsets used for branches based on preprocessing anno-

5

public void clearTiles() {
 for (int x = 0; x < mXTileCount; x++) {
 for (int y = 0; y < mYTileCount; y++) {
 setTile(0, x, y);
 }
 }
}

public void clearTiles() {
 int var1 = 0;
 while(true) {
 int var2 = mXTileCount;
 if(var1 >= var2) { return; }
 int var3 = 0;
 while(true) {
 var2 = mYTileCount;
 if(var3 >=var2) {
 ++var1;

 break;
 }
 byte var4 = 0;
 this.setTile(var4, var1, var3);
 ++var3;
 }
 }
}

public void clearTiles() {
 for(int var1 = 0; var1 < mXTileCount; ++var1) {
 for(int var2 = 0; var2 < mYTileCount; ++var2) {
 this.setTile(0, var1, var2);
 }
 }
}

#1 - Original Source Code #2 - Unoptimized Recovered Source Code

#3 - Optimized Recovered Source Code

Figure 6: Original, recovered unoptimized, and recovered optimized source code.

tations. Finally, ded defines exception tables that describe
try/catch/finally blocks. The result when combined with
the constant pool is a Java .class file.

Table 1 provides two example translation rules. The first
example illustrates the translation of an add instruction.
For each register, ded creates a corresponding Java local
variable, i.e., d0 → d′

0, s0 → s′
0, etc. The translation cre-

ates four Java instructions: two instructions to push the
variables onto the stack, one instruction to add, and one
to pop the result. The second example, invoke-virtual,
shows the translation of a virtual method invocation. This
example demonstrates two intricate details for which ded
must account. First, Dalvik’s register method arguments do
not always correspond to Java’s variable method arguments.
In Dalvik, registers are always 32-bits, and 64-bit variables
are stored in two adjacent registers. Hence, ded must in-
spect the method descriptor when translating registers to
variables for method invocation. Second, Dalvik bytecode
commonly omits the move-result instruction if the return
value is not used. However, the Java bytecode must always
pop the return value off the stack, regardless of its use. ded
includes related logic to ensure stack integrity.

4.4 Optimization and Decompilation
At this stage, the retargeted .class files can be decom-

piled using existing tools, e.g., Fernflower [5] or Soot [38].
However, ded’s bytecode translation process yields unopti-
mized Java code. For example, Java tools often optimize out
unnecessary assignments to the local variable table, e.g., un-
needed return values. The lack of optimization yields com-
plex decompiled code and frustrates its subsequent analysis.
Furthermore, artifacts of the retargeting process lead to po-
tential decompilation errors in some decompilers. To remedy
these issues, we post process .class files using a bytecode
optimizer such as Soot [38].

The need for bytecode optimization can be demonstrated
by looking at decompiled loops. Most decompilers convert
for loops into infinite loops with break instructions. While
the resulting source code is functionally equivalent to the
original, it is significantly more difficult to understand and
analyze, especially for nested loops. Figure 6 shows exam-
ple retargeted source with and without optimization; (#1)
shows the original source code, (#2) shows unoptimized de-
compiled code, and (#3) shows optimized decompiled code.
Note that the optimized decompiled code is, modulo variable
names, virtually identical to the original source, whereas the
unoptimized code is nearly indecipherable.

The Soot tool [38] performs a myriad of optimization, data

and control analysis, and decompilation on each program.
We use Soot with default optimizations for the next two
stages of application processing; optimization and decompi-
lation (of Figure 1). Note that these processes can fail due to
the limitations of our retargeting. We revisit the frequency
and source of these failures in our evaluation of Android
applications in the next section. Also note that other de-
compilers such as Fernflower may perform better than Soot.
For example, an informal comparison of Soot and Fernflower
decompilation suggests that the latter is more robust. We
defer investigation of other tools to future work.

5. EVALUATION
This section studies the accuracy and results of the pro-

posed certification process. We begin by validating the ac-
curacy of the recovery process, then analyze the results of
a preliminary certification of 1,100 applications downloaded
from the Android market.

5.1 Recovery Validation
We first sought to validate the recovered code was faith-

ful to the original source. Although tools exist to check the
similarity of Java source code, we desired a much stronger
comparison. The only reliable way to perform validation
was, sadly, through manual inspection. Five open source
applications ranging in size and origin were selected for val-
idation. A percentage of the recovered methods (selected at
random) were compared against the original source to ensure
it was functionally identical. All aspects of the source code
were compared, e.g., control flow, calls, arithmetic opera-
tors, etc. The validated applications included; Snake (421
LOC, 100% of methods validated), Radar (581 LOC, 20%
checked), Translate (1868 LOC, 20% checked), Countdown
by OpenIntents (4450 LOC, 20% checked), and WordPress
(11,727 LOC, 5% checked).

The validation process found no errors in the recovery
process; every method checked was functionally identical to
the original code, with three exceptions. The exceptions oc-
curred due to the limitations of Soot, and included a) incor-
rect super references, b) improper structure in try/catch

blocks, and c) improper super constructor calls. These
translation error are not present in tools such as FernFlower.
Note that these errors did not effect our vulnerability detec-
tion described below in any meaningful way.

5.2 Certification Evaluation
Our second analysis focuses on the results of the certifi-

cation itself. The experiments described here use the top 50

6

free applications available from the Android Market in each
of the 22 application categories (API level 4). These 1,100
applications were downloaded using an automated tool from
Android Market on December 11th, 2009. Our decision to
use only free applications does not meaningfully impact the
experimental results (beyond a potential for the paid ap-
plications to have undergone a more thorough development
process). Android makes no distinction between paid or
free applications, and no addition of DRM is applied. For
completeness, we successfully recovered and analyzed source
code from sample paid applications without error. We omit
further discussion of paid applications for brevity.

ded was compiled using gcc version 4.4.1. The code re-
covery experiments were run on 64-bit, 8 core, 2.33 GHz (8
GB RAM) Dell blades running Linux Ubuntu version 9.10
(kernel version 2.6.31-17). We used a customized version of
Soot with default optimization options. We relaxed super-
fluous (for our purposes) checks on internal string represen-
tations and deactivated the elimination of store/load/load
trios that can yield illegal code on legal input. We further
deactivated the code transformations that add unnecessary
(non-Android) system support code. Certification tests use
Yasca 2.1 with the PMD plugin version 4.2.5 4-core 2.33 us-
ing PHP version 5.2.10 on a 3.20 GHz Dell desktop. SLOC
counts were generated using SLOCCount version 2.26 [13].

Note that imperfect analysis is subject to false-positives;
we may incorrectly flag that source code violates a tested
security property. How this is handled by the certifier is
subject to policy; the developer may refactor the code to
remove the violation or provide evidence/explanation that
the reported error is a false positive. As with iPhone, the
likely answer is probably a combination of both.

5.2.1 Source Code Recovery
The first set of experiments measured the code recovery

process. Table 2 shows the number of classes that were
successfully retargeted (converted from Dalvik to Java byte-
code) and recovered (source code retrieved). Notably, over
99.6% of the .class files were successfully retargeted, and
the source code for 95% of the classes was recovered.

The computational costs of recovering the source code
were not onerous. The total time to recover the source code
for all 1,100 applications was about 272 computation-hours,
or a little over 14 minutes of processor time per application.
Interestingly, the retargeting process was completely domi-
nated by the optimization and decompilation process. The
retargeting process took on average about 17 msec per class,
whereas the source code recovery took about 6.8 seconds per
class. The per-application recovery costs were largely linear
in the number of classes (standard deviation 6.694 sec).

The 534 retargeting failures fell into three classes. The
first class of failures was the result of unresolved class ref-
erences. We confirmed that these errors can be fixed by
investigating and supplying Soot precise versions of support
classes needed by the failed application. We are investigat-
ing ways to automate the labor-intensive process of finding
correct support libraries. The second class of errors occurred
due to invalid input Dalvik bytecode. We observed a small
number of applications whose bytecode had type system vio-
lations. This occurred when specific exceptional control flow
structures (i.e., specific placement of try/catch blocks) were
present in a method. Such bytecode can be repaired by re-
ducing the scope of a try block to only instructions that are

capable of throwing the target exception. While we were
able confirm the fix by directly editing the bytecode using a
binary editor and retargeting, we have yet to identify an al-
gorithm to do this automatically.3 The last very infrequent
class of errors remains unexplained. We are continuing to
explore pathological boundary cases or errors in ded that
produce invalid bytecode.

The source code recovery failures also were equally di-
verse. Soot is an optimization tool with the ability to recover
source code in most cases, but does not process certain le-
gal program idioms (code structures) generated by ded. We
encountered and refactored many of these idioms while de-
veloping ded, but were unable to resolve all of them. In
particular, two central problems we have encountered in-
volve interactions between synchronized blocks and excep-
tion handling, and complex control flows caused by break
statements. The difference between the success rates of re-
targeted and recovered rates is largely due to Soot’s inabil-
ity to extract source code from these otherwise legal idioms.
Note that other tools such as Fernflower [5] can be more
resilient in the face of these idioms. We chose not to use
Fernflower in this paper because it is an online service that
requires direct access to the bytecode. Sending retargeted
bytecode over the Internet to a third party presents both
logistical and potential legal challenges.

5.2.2 Application Vulnerability Analysis
The second battery of tests evaluated application vulner-

ability detection. Yasca was configured to detect a) weak
crypto: the use of poor crypto algorithms, e.g., DES, unsafe
PRNGs; b) bad practices: general bad programming prac-
tices, e.g., empty exception catch blocks, required but un-
called superclass constructors; c) AJAX: the use of AJAX
(which Yasca/PMD deem dangerous); d) file use: files be-
ing created or modified in unsafe ways, e.g., poor log file
handling; e) DoS: exposing applications to denial of ser-
vice, e.g., reading from arbitrary files; f) process control:
the use of external programs such as “su” or other low-level
programs, or loading external Java libraries; and g) hidden
permissions: permissions asserted within code, rather than
through policy configuration manifest (see below).

Table 3 shows the results of the analysis of the Android
applications. Yasca flagged over 3,000 different locations in
the recovered source code. An investigation of the flagged
code yields some interesting results. One surprising discov-
ery was that there was widespread use of weak cryptographic
algorithms. In particular, 56-bit DES, RC4 and MD5 were
widely used. While it is unclear what these are used for,
their use at all is enough for Yasca to consider the code
suspect. In another vein, the vast majority of flagged code
for AJAX existed in a single sports-score application. The
application was tightly integrated with an online Web sys-
tem, and thus these flags are likely false positives. The DoS
vulnerabilities represented about 32% of the 3,119 vulnera-
bilities. Most of these flags were due to file reads; Yasca flags
blocking I/O read calls as potential vulnerabilities requiring
closer inspection to ensure an adversary cannot supply an
input file that consumes unexpected resources or blocks in-
definitely. In many cases the adversary will not be able to
control the input file, therefore it is reasonable to expect
that many errors are false positives. We were also surprised

3Soot has a documented feature to perform this code trans-
formation, but it failed on all our sample bytecode.

7

Table 2: Application source code recovery for the top 1,100 free Android Market applications (Dec. 2009).

App Retargeted Recovered
Category Size (bytes) classes classes % classes % SLOC

Comics 3,675,436 2,767 2,764 99.89% 2,656 95.99% 158,526
Communication 17,984,508 12,976 12,925 99.61% 12,010 92.56% 991,205
Demo 4,849,012 4,236 4,235 99.98% 4,061 95.87% 374,433
Entertainment 5,103,224 5,423 5,421 99.96% 5,239 96.61% 253,033
Finance 7,116,100 5,141 5,132 99.82% 4,972 96.71% 411,413
Arcade Games 10,244,184 5,401 5,361 99.26% 5,114 94.69% 610,042
Puzzle Games 4,995,604 3,308 3,290 99.46% 3,141 94.95% 257,554
Casino Games 9,586,980 4,947 4,920 99.45% 4,688 94.76% 572,903
Casual Games 5,662,640 3,492 3,483 99.74% 3,316 94.96% 303,673
Health 7,905,040 5,260 5,251 99.83% 5,099 96.94% 463,285
Lifestyle 9,547,124 6,692 6,676 99.76% 6,289 93.98% 544,005
Multimedia 12,889,520 9,902 9,844 99.41% 9,336 94.28% 784,082
News/Weather 9,565,676 6,610 6,574 99.46% 6,160 93.19% 466,465
Productivity 18,512,912 12,376 12,324 99.58% 11,745 94.90% 1,147,235
Reference 7,159,300 4,614 4,599 99.67% 4,403 95.43% 441,536
Shopping 11,263,896 8,318 8,300 99.78% 8,009 96.29% 738,213
Social 18,090,512 14,342 14,311 99.78% 13,744 95.83% 1,176,859
Libraries 4,757,036 3,653 3,646 99.81% 3,527 96.55% 301,248
Sports 13,580,008 9,589 9,550 99.59% 9,288 96.86% 1,650,778
Themes 411,568 508 506 99.61% 491 96.65% 13,079
Tools 5,331,940 3,690 3,670 99.46% 3,509 95.09% 304,347
Travel 13,906,124 9,845 9,774 99.28% 9,231 93.76% 877,031

TOTAL 202,138,344 143,090 142,556 99.63% 136,028 95.06% 12,840,945

Table 3: Application Analysis - potential vulnerabilities flagged by Yasca analysis.

Weak Bad File Process Hidden
Category crypto practice AJAX use DoS control permission Total

Comics 0 0 0 0 48 1 0 49
Communication 22 1 0 3 83 131 235 475
Demo 3 0 0 0 6 14 9 32
Entertainment 0 0 79 0 42 0 19 140
Finance 1 0 0 0 44 23 8 76
Arcade Games 0 3 0 0 34 28 0 65
Puzzle Games 0 0 0 0 28 24 0 52
Casino Games 1 4 0 0 27 8 2 42
Casual Games 0 1 0 0 34 3 0 38
Health 5 0 0 1 43 64 12 125
Lifestyle 24 0 2 0 67 48 28 169
Multimedia 15 0 1 0 100 72 156 344
News/Weather 5 1 0 1 46 2 50 105
Productivity 31 7 6 0 58 19 66 187
Reference 5 1 0 0 36 13 4 59
Shopping 9 0 0 0 53 49 28 139
Social 19 0 0 0 74 166 47 306
Libraries 60 5 0 0 30 135 25 255
Sports 3 2 0 0 65 22 13 105
Themes 8 0 0 0 0 0 0 8
Tools 14 3 0 4 28 7 79 135
Travel 10 0 0 3 63 119 18 213

TOTAL 235 28 88 12 1,009 948 799 3,119

8

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 50 100 150 200 250 300

N
um

be
r o

f p
ot

en
tia

l v
ul

ne
ra

bi
lit

ie
s

KLOC

Figure 7: Number of potential vulnerabilities based
on lines of code in an application.

at the pervasiveness of the process control flags; it seems
that several programs were using the underlying embedded
Linux tools. e.g., “su.” Such uses are dangerous under nor-
mal circumstances, but in Android they serve to bypass the
permission system. Therefore they should be used carefully
if at all.

Lastly, our Android-specific test searched for “hidden per-
missions” used for IPC. We characterize such instances as
potential vulnerabilities because it requires developers to
correctly enforce policy through code, rather than relying
on the platform permission system. Thus, poorly imple-
mented applications may silently violate the system policy.
Moreover, because they are embedded in source code, policy
analysis tools are not able to evaluate their correctness (e.g.,
Kirin [23]). Note that our custom permission check is only
one (simple) heuristic for identifying potentially vulnerable
security policy specification. However, even simple heuristic
demonstrates that these intents were used in a small num-
ber of applications, but that those that did use them did so
frequently. Future work will perform a more sophisticated
analysis of security policy embedded within code.

Figure 7 plots the number of identified potential vulner-
abilities in an application based on number of lines of code
in that application. Note that both the application with the
most vulnerabilities and the application with the most LOC
were removed for presentation purposes. The plot does not
indicate any obvious trend of potential vulnerabilities based
on the size of the application. We experimented with sev-
eral different representations (e.g., number of classes, binary
size) with similar results.

Finally, we stress here that these are preliminary tests.
Beyond the brief notes presented here, we have not system-
atically evaluated the flagged source code to see which rep-
resent real vulnerabilities and which are false positives. The
focus of this work was to validate the certification process
was feasible in practice. The identification of over 3,000
potential problems within the tested application serves as
validation of this. The real certification of 1,100 applica-
tions, however, is an orthogonal and substantial effort in its
own right.

6. RELATED WORK
Java decompilation has been around almost as long as the

language itself. Proebsting invented a comprehensive java

decompilation method [35] in 1997 shortly after Mocha [10]
decompiler was released. This remained the state of the art
until 2001 when Dava [30, 29, 33] was introduced. Dava is
built on the Soot tool used throughout. The Soot frame-
work uses sophisticated type inference [25, 16, 32] and code
analysis techniques to accurately recover the original code.
Closed source decompilers such Jad [8], JD [7] and Fern-
flower [5] are extremely effective at recovering source code,
but their associated algorithms are not made public.

Ours is not the first work to use decompilation to en-
able security analysis [21]. Tools such as Yasca [15] and
PMD [11], FindBugs [6], JLint [2], QJ-Pro [12], Lint4j [9],
Checkstyle [3] verify best coding practices and the absence
or presence of vulnerabilities or bugs. Interested readers are
referred to surveys on code level [40] and bytecode-level [27]
security analysis. These and similar tools have applied in
many domains of security [20]. In particular, [28] presents
a technique based on a points-to analysis for the detection
of vulnerabilities in Java applications. Also, significant work
has been done in large scale static analysis of C code [19, 36].
Our preliminary evaluation relies on simple lexical analysis
tools [41, 20, 28]. Thus, future work will focus on more pow-
erful analysis tools that will enable stronger certification.

Two parallel efforts are also attempting to recover source
code from Android application code files. Like ded, the
undx [14] and dex2jar [4] tools attempts to recover Dalvik
application class files from the installation image. Our ex-
periments using these tools on a array of applications demon-
strated that they only recover about 14% (undx) and 6%
(dex2jar) of classes. Further investigation of the tools showed
that they lacked many of the key algorithms and structures
needed to accurately retarget Android applications.

7. CONCLUSION
Smartphone application development is one of the fastest

growing technology markets in the world. However, apart
from weak assurances of market providers, users currently
have no way of evaluating whether these applications are
safe to use. This paper has presented a new user-centric
certification method for this evaluation; organizations and
concerned users extract the application source code from
the installation image and perform code-level analysis of its
structure. We have illustrated the design and challenges of
the ded decompiler and performed a large but preliminary
analysis of 1,100 mobile phone applications. The experiment
shows that the certification process is feasible in practice.

This paper has described tools for the execution of appli-
cation certification. However, this is only half of the story.
Defining security policies appropriate for cell phones and
the data they manage is a complex and context-sensitive
process. Moreover, to enforce those policies, we need to
perform deeper validation of the source code recovered us-
ing stronger analysis techniques. Our future work will focus
centrally on these critical activities.

8. REFERENCES
[1] Apple iphone - mobile phone, ipod, and internet

device. http://www.apple.com/iphone/.

[2] Artho software - jlint. http://artho.com/jlint/.

[3] Checkstyle. http://checkstyle.sourceforge.net/.

[4] dex2jar. https://code.google.com/p/dex2jar/.

9

[5] Fernflower - java decompiler.
http://www.reversed-java.com/fernflower/.

[6] Findbugs - find bugs in java programs.
http://findbugs.sourceforge.net/.

[7] Jad - the fast java decompiler.
http://www.kpdus.com/jad.html.

[8] Jd java decompiler.
http://java.decompiler.free.fr/.

[9] Lint4j. http://www.jutils.com/.

[10] Mocha, the java decompiler.
http://www.brouhaha.com/ eric/software/mocha/.

[11] Pmd. http://pmd.sourceforge.net/.

[12] Qj-pro - code analyzer for java.
http://qjpro.sourceforge.net/.

[13] Sloccount. http://www.dwheeler.com/sloccount/.

[14] Undx, a reconstructor for dalvik bytecode.
http://www.illegalaccess.org/undx/.

[15] Yasca - yet another source code analyzer.
http://www.yasca.org/.

[16] B. Bellamy, P. Avgustinov, O. de Moor, and D. Sereni.
Efficient local type inference. In G. Kiczales, editor,
OOPSLA’07: 22nd Annual ACM SIGPLAN
Conference on Object-Oriented Programming,
Systems, Languages, and Applications. ACM, 2008.

[17] D. Bornstein. Google i/o 2008 - dalvik virtual machine
internals.
http://www.youtube.com/watch?v=ptjedOZEXPM.

[18] E. Chaillou, P. Manoury, and B. Pagano. Developing
Applications with Objective Caml. O’Reilly, France,
2000. Available from
http://caml.inria.fr/pub/docs/oreilly-

book/index.html.

[19] H. Chen, D. Dean, and D. Wagner. Model checking
one million lines of c code. In Proc. of the 11th Annual
Network and Distributed System Security Symposium
(NDSS), 2004.

[20] B. Chess and G. McGraw. Static analysis for security.
IEEE Security and Privacy, 2(6):76–79, 2004.

[21] C. Cifuentes, T. Waddington, and M. V. Emmerik.
Computer security analysis through decompilation
and high-level debugging. In Proc. of the Workshop on
Decompilation Techniques, pages 375–380. IEEE
Press, 2001.

[22] G. Cluley. First iphone worm discovered - ikee changes
wallpaper to rick astley photo, November 2009.
http://www.sophos.com/blogs/gc/g/2009/11/08/

iphone-worm-discovered-wallpaper-rick-astley-photo/.

[23] W. Enck, M. Ongtang, and P. McDaniel. On
Lightweight Mobile Phone App Certification. In Proc.
of the 16th ACM Conference on Computer and
Communications Security (CCS), November 2009.

[24] W. Enck, M. Ongtang, and P. McDaniel.
Understanding android security. IEEE Security and
Privacy, 7(1):50–57, 2009.

[25] E. Gagnon, L. J. Hendren, and G. Marceau. Efficient
inference of static types for java bytecode. In SAS ’00:
Proc. of the 7th International Symposium on Static
Analysis, pages 199–219. Springer-Verlag, 2000.

[26] D. Goodin. Backdoor in top iphone games stole user
data, suit claims. The Register, November 2009.
http://www.theregister.co.uk/2009/11/06/

iphone_games_storm8_lawsuit/.

[27] X. Leroy. Java bytecode verification: Algorithms and
formalizations. J. Autom. Reason., 30(3-4):235–269,
2003.

[28] V. B. Livshits and M. S. Lam. Finding security
vulnerabilities in java applications with static analysis.
In Proc. of the 14th conference on USENIX Security
Symposium. USENIX Association, 2005.

[29] J. Miecznikowski and L. Hendren. Decompiling java
using staged encapsulation. In WCRE ’01: Proc. of
the Eighth Working Conference on Reverse
Engineering, page 368. IEEE Computer Society, 2001.

[30] J. Miecznikowski and L. J. Hendren. Decompiling java
bytecode: Problems, traps and pitfalls. In CC ’02:
Proc. of the 11th International Conference on
Compiler Construction, pages 111–127.
Springer-Verlag, 2002.

[31] R. Milner. A theory of type polymorphism in
programming. Journal of Computer and System
Sciences, 17:348–375, August 1978.

[32] A. Mycroft. Type-based decompilation (or program
reconstruction via type reconstruction). In Proc. of the
8th European Symposium on Programming Languages
and Systems, pages 208–223. Springer-Verlag, 1999.

[33] N. A. Naeem and L. Hendren. Programmer-friendly
decompiled java. In ICPC ’06: Proc. of the 14th IEEE
International Conference on Program Comprehension,
pages 327–336. IEEE Computer Society, 2006.

[34] M. Ongtang, S. McLaughlin, W. Enck, and
P. McDaniel. Semantically Rich Application-Centric
Security in Android. In Proc. of the 25th Annual
Computer Security Applications Conference (ACSAC),
December 2009.

[35] T. A. Proebsting and S. A. Watterson. Krakatoa:
Decompilation in java (does bytecode reveal source?).
In Third USENIX Conference on Object-Oriented
Technologies and Systems (COOTS), 1997.

[36] B. Schwarz, H. Chen, D. Wagner, J. Lin, W. Tu,
G. Morrison, and J. West. Model checking an entire
linux distribution for security violations. In ACSAC
’05: Proc. of the 21st Annual Computer Security
Applications Conference, pages 13–22. IEEE
Computer Society, 2005.

[37] J. Tiuryn. Type inference problems: A survey. In
MFCS ’90: Proc. of the Mathematical Foundations of
Computer Science 1990, pages 105–120.
Springer-Verlag, 1990.

[38] R. Vallee-Rai, E. Gagnon, L. Hendren, P. Lam,
P. Pominville, and V. Sundaresan. Optimizing java
bytecode using the soot framework: Is it feasible? In
International Conference on Compiler Construction,
LNCS 1781, pages 18–34, 2000.

[39] L. Wall, T. Christiansen, and J. Orwant. Programming
Perl. O’Reilly & Associates, Inc., 2000.

[40] M. S. Ware and C. J. Fox. Securing java code:
heuristics and an evaluation of static analysis tools. In
SAW ’08: Proc. of the 2008 workshop on Static
analysis, pages 12–21. ACM, 2008.

[41] M. Zitser, R. Lippmann, and T. Leek. Testing static
analysis tools using exploitable buffer overflows from
open source code. SIGSOFT Softw. Eng. Notes,
29(6):97–106, 2004.

10

