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Abstract—Online social communities often exhibit complex
relationship structures, ranging from close friends to political
rivals. As a result, persons are influenced by their friends and foes
differently. Network applications can benefit from accompanying
these structural differences in propagation schemes. In this
paper, we study the optimal influence propagation policies for
networks with positive and negative relationship types. We tackle
the problem of minimizing the end-to-end propagation cost of
influencing a target person in favor of an idea by utilizing the re-
lationship types in the underlying social graph. The propagation
cost is incurred by social and physical network dynamics such
as frequency of interaction, the strength of friendship and foe
ties, propagation delay or the impact factor of the propagating
idea. We extend this problem by incorporating the impact of
message deterioration and ignorance. We demonstrate our results
in both a controlled environment and the Epinions dataset.
Our results show that judicious propagation schemes lead to
a significant reduction in the average cost and complexity of
influence propagation compared to naı̈ve myopic algorithms.

Index Terms—Socially aware physical systems, network prop-
agation for social media, signed networks, recommender systems.

I. INTRODUCTION

Social networks have grown into a major platform for
spread of information, thanks to the proliferation of smart
devices and portable computers [1]. Online communities often
exhibit highly complex relationship structures, ranging from
like-minded friends to ideological foes. However, conventional
social network analysis often considers solely monolithic rela-
tionship types, one that treats all relations as friendly [2]–[5].
The need for identifying multiple relation types in networks
has recently been emphasized in various works [6]–[10].

Consider an online recommendation process for an upcom-
ing election between two candidates A and B. A recom-
mender is suggesting one candidate to each person based on
the information available about her interests and friendship
structures. Alice has two neighbors, Bob and Eve. Bob shares
the same world interpretation with Alice, whereas Eve is in
complete opposition. The recommender knows that both Bob
and Eve support B. It can then provide one of the following
suggestions to Alice, “Bob supports B, do you want to choose
B, too?” or “Eve supports B, do you want to choose B?”. In
the first case, Alice is likely to support B since Bob is an
ideological ally. In the latter case, when Alice sees that Eve
supports B, she will have a negative opinion about B since
Eve is an ideological foe. Depending on the network interests,

the recommender can make a choice between the two in order
to influence Alice in the desired direction.

Influence propagation has been extensively studied in the
field of social networks with monolithic relationships [4], [5],
[11]–[15]. Many applications focus on identifying the users
that maximize the spread of influence, or limit misinformation
[16], by means of probabilistic or optimization-based methods
and efficient heuristics. Despite broad interest and a vast
literature in influence models, the significance of relationship
types has only recently been discovered [17]. Focusing on
influence diffusion for opposing ideas in signed networks, [17]
has observed that taking relationship types into consideration
yields notable changes in diffusion patterns. However, current
literature has not addressed influencing policies, or considered
key metrics such as propagation costs.

In this paper, we aim to bridge this gap, by taking a new
perspective on the influence propagation problem in a network
with positive and negative links as in Fig. 1. The signs serve
to differentiate one’s like-minded neighbors from the ones
with an opposite world view. Our approach is based on the
principle of homophily [18], namely that people are influenced
by their friends and foes differently. In effect, persons tend to
agree with their neighbors who are ideologically similar or
share similar interests, and oppose to the opinions of their
ideological foes [6]. That is, people tend to take sides in
favor of or against an idea (product, candidate, opinion) based
on the observations made available to them. An interesting
phenomenon occurs when a neighbor with an antagonistic
world view is against an idea. In this case, one is likely to
go against the neighbor, which results in a positive disposition
towards the original idea. This phenomenon has been widely
observed in the real world, including the historical details of
the European alliances before World War I [19], [20].

We posit that each social link incurs a cost of propagation,
which has various social and physical interpretations such as
the frequency of interaction, propagation delay, the strength of
friendship/foe ties or the impact factor of the propagating idea.
This allows us to demonstrate the optimal policies in terms of a
policy-free measurement metric. We note that the right metric,
which is often a weighted combination of multiple social and
physical factors, depends on the design goal of the network.
One important physical metric we address in this study is the
end-to-end delay, which is essential for delivering the fastest
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network experience to the user. Based on this discussion, we
address the problem of minimizing the end-to-end propagation
cost to influence a target node positively with a given idea.
By doing so, we stipulate the target node to support the idea
within minimum end-to-end cost incurred through the network.
In case the cost metric is end-to-end delay, this refers to the
fastest policy for influencing a target node positively. The
optimal policies can be integrated with routing schemes with
different design goals as required by the network provider.

We expect our findings to be useful in various social
network applications in which relationship types cause a
significant impact on network benefits. Our contributions are:

• We develop the first model that addresses the optimal
propagation policies in signed networks. This framework
is extensible in multiple ways.

• We evaluate these algorithms using both a controlled
setting and real-world data from the Epinions website.

• We provide interesting insights on influence propagation
in the Epinions data. We find that randomly selected
sources can positively influence randomly selected desti-
nations in over 87% of the cases.

II. RELATED WORK

Social trust, influence, friendship relations and their impact
on information flow, have been investigated in various studies
[2]–[10], from connecting people with trust scores [21], to
characterizing trust and distrust by signs [22], [23], or using
relationships in software design to assist recommenders [24].

Associating positive and negative links with social relations
dates back to balance and status theories in social psychology
[25], [26]. These theories investigate the cognitive relation-
ships between living beings and provide a graph-theoretic de-
scription of dynamics of balanced structures in organizational
networks. In the context of social media, signed links represent
positive and negative relationships in human interactions [22],
[23]. The evolution of the signed link structures over time
is analyzed in [22]. The problem of predicting positive and
negative relationships in online network data is studied in [23].

Much of the previous work on influence propagation is
focused on triggering common behavior in the social network,
namely influence maximization. The problem of selecting the
most influential nodes for a large fraction of the network to
adopt a new product is posed in [4]. Two major propaga-
tion models, independent cascade and linear threshold, are
studied in [5] with provable approximation guarantees. Many
heuristics are proposed to improve the efficiency of these
algorithms [11]–[14], some of which depend on probabilistic
methods. Independent cascade has recently been applied to
signed networks in [17] to identify the optimal seeds for
short and long-term influence maximization. In particular, [17]
addresses a model in which the recommender has no impact
on the propagation of influence once the key users have been
seeded. In contrast, our model identifies the optimal strategies
for message propagation to influence a target node positively,
whereas in [17], each node randomly picks one of its outgoing
neighbors and adopts her opinion. Unlike [17], we utilize the
relationship types to steer the opinion in the desired direction,
and address how to optimize the network propagation costs.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
��

�

�

�
�

�

�

� �

�

�

�

�

�

�

��

�

�

�

� �

�

�

�

�

�

�

�
�

�

�

�

Fig. 1. Positive and negative links in a signed social network.

III. SOCIAL NETWORK MODEL

We first consider a directed acyclic graph. Section VI
generalizes the propagation scheme to cyclic graphs. Let
G = (V,E) be a graph with |V | nodes representing the social
network. A directed edge exists from node u to node v if
(u, v) ∈ E. The coordinates of a node u ∈ V are represented
by the tuple (ux, uy). Throughout the paper, we represent a
node by its index and its coordinates interchangeably. Each
edge (u, v) is assigned a sign su,v ∈ {−1, 1} to represent
the relationship type between persons u and v. In effect, su,v
reflects the attitude of one person towards the other.

Initially, we activate a source node via a message from
an external source, news or a promotion. This node then
passes the message to one of its neighbors which results
in a positive or negative influence. Propagation continues
throughout the network until the message reaches the target
node. Alternatively, this model can be interpreted as a recom-
mendation network, with a recommender making suggestions
to individual persons on a path, based on the preferences of
their contacts. A person is likely to be positively influenced by
the recommender if the previous contact is supporting an idea
(candidate, product) and is a friend, whereas if the previous
contact is a foe, the person is likely to oppose the idea.

We represent the cost of influence propagation between two
persons by a nonnegative weight. An example of such a cost
is the propagation delay between the two parties. The delay
variable has both social and physical interpretations. From a
physical standpoint, it is an important metric for assessing
the QoS (quality of service) of multi-hop sensor networks,
and may depend on various quantities such as the bandwidth,
load, and physical distance between the travelled links. From
a social perspective, it represents the strength of the actions
of one person on influencing the others, either positively
or negatively, with a smaller delay representing a quicker
response. It may also indicate the frequency of interaction
between the two persons. We provide a formal definition of
the influence propagation problem in the sequel.

IV. MINIMUM-COST POSITIVE INFLUENCE PROPAGATION

We study in this section influence propagation with mini-
mum expected end-to-end cost. Let uo and ud represent the
source and destination nodes, respectively. We seek the opti-
mal path and policy to influence the target person (destination)
positively with minimum total cost. The propagation cost from
node u to its neighbor v is denoted by du,v ≥ 0. Any direction
with no edge is assigned an infinite cost. The sign of the
relationship between node u and v is given by su,v . The set of
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Algorithm 1 Backward Induction Dynamic Programming for
Minimum-Cost Influence Propagation

1: procedure MINCOST(V , E, s, d, uo, ud) � s and d are the arrays of
all edge signs and costs

2: Set the boundary conditions from (4)
3: for all u from ud to uo in reverse topological order do
4: Compute S(u, 0) and S(u, 1) using (2)-(3)
5: Record the decisions (next hop) π(u, 0) and π(u, 1) that lead to

S(u, 0) and S(u, 1)

6: P ∗ := [uo]; u := uo; parity := 0
7: while u �= ud do
8: temp := π(u, parity)
9: if parity = su,temp then parity := 0 else parity := 1

10: u := temp
11: Append u to P ∗

12: return the optimal path P ∗ and the minimum cost S(uo, 0)

all possible paths from uo to ud is given by P . The minimum-
cost positive influence propagation problem is given as:

min
P∈P

∑
u,v: (u,v)∈P

du,v

s.t.
∏

u,v: (u,v)∈P

su,v = +1 (1)

where the objective function stands for the total cost of path P ,
and the multiplicative constraint ensures that the destination
is positively influenced by the intended idea. (1) is a dynamic
program which we can solve via backward induction. Without
loss of generality, we label the node indices in topological
order. That is, for every edge (u, v) ∈ E, u ≤ v. Such an
ordering is feasible for any directed acyclic graph [27].

We define an optimal value function S(u, z) that quantifies
the minimum total cost of the optimal path from node u to the
destination, in terms of a parity variable z ∈ {0, 1}. The case
z = 0 implies a path for which the product of the signs from u
to the destination is equal to +1, termed as even-parity path.
Similarly, z = 1 refers to a path for which the product of the
signs from u to the destination is −1, termed as odd-parity
path. The value functions for the even and odd-parity paths
from node u to the destination are given as follows:

S(u, 0)= min
v:(u,v)∈E

{du,v+δ(su,v−1)S(v, 0)+δ(su,v+1)S(v, 1)}
(2)

S(u, 1)= min
v:(u,v)∈E

{du,v+δ(su,v−1)S(v, 1)+δ(su,v+1)S(v, 0)}
(3)

where S(u, 0) is the even and S(u, 1) is the odd-parity path.
The delta function is given as δ(0) = 1 and δ(x) = 0 for all
x �= 0. The minimum total cost for influencing the target node
positively is then determined from S(uo, 0). The boundary
conditions are given as follows:

S(ud, 0) = 0, S(ud, 1) = ∞ (4)

The pseudo-code for solving (1) is presented in Algorithm 1.

V. INFLUENCE PROPAGATION WITH MESSAGE

DETERIORATION AND IGNORANCE

An idea propagating through a social network often distorts
as it is repeated, also known as the “Telephone” effect [28]. In
effect, persons’ individual interpretations or subjective priority
assessments may alter the content of the message (news, idea)
reaching a target person. In this section, we quantify the

Algorithm 2 Minimum-Cost Influence Propagation with Message
Deterioration and Ignorance

1: procedure DETERIORATIONMINCOST(V , E, s, d, uo, ud, K)
2: Assign the boundary conditions from (9)
3: for all u from ud to uo in reverse topological order do
4: for k := 1 to K do
5: Compute S(u, k, 0) and S(u, k, 1) using (6)
6: Record the decisions (next hop and activation) π(u, k, 0) and

π(u, k, 1) that lead to S(u, k, 0) and S(u, k, 1)

7: Compute the optimal path in a way similar to Lines 6-11 in Algorithm
1, additionally taking into account the decisions on age and activation

8: return the optimal path and the minimum expected cost S(uo, 1, 0)

impact of message freshness on influence propagation. We
assume that persons may ignore a received message based on
the link strength between the nodes and message freshness.
In this case, the recommender has to reactivate the node
with an additional cost to refresh the message either by an
advertisement or a special promotion. The recommender may
also activate a node on the path solely with the purpose of
refreshing the message, even without being ignored, with a
cost. We determine the optimal path with minimum expected
cost and the activation sequence, i.e., the nodes to activate
in case of no ignorance. In case a person ignores a message,
which may or may not occur, reactivation is necessary.

In order to model the effect of deterioration and ignorance,
we take into account message freshness and the possibility that
nodes may choose to ignore each other. For message freshness,
we define the age of a message, k as the number of hops the
message has traveled since the last activation. An activation
resets the message age to 1 and is required if a node chooses to
ignore the message. The recommender may choose to activate
a node even if the message is not ignored, in order to reset the
message age to 0, however, there is a cost c for each activation.
The maximum age for the message is K; if a message is of
age K, then the next node on the path has to be activated.

We denote the cost to influence node v through node u
with a message of age ku,v by the random variable du,v(ku,v).
Every node has a growing tendency of ignoring a message as
its age increases. We denote by pu,v(ku,v) the probability that
node v ignores node u for a message of age ku,v , and is
a monotonically increasing function of the distance between
two nodes and message age. The minimum expected cost is:

min
P∈P
au,v

∑
(u,v)∈P

{
E[du,v(ku,v)] + c δ(au,v − 1)(1− pu,v(ku,v))

+ c pu,v(ku,v)
}

s.t.
∏

(u,v)∈P

su,v = 1 (5)

au,v ∈ {0, 1}, ∀(u, v) ∈ P

ku,v ∈ {1, 2, . . . ,K}, ∀(u, v) ∈ P

kv,w = (ku,v + 1)δ(au,v), ∀(u, v), (v, w) ∈ P

kuo,v = 1, ∀(uo, v) ∈ P

where we optimize over path P and the activation sequence
(au,v). Each variable au,v is 1 if node v is activated, and 0
otherwise. We solve (5) by utilizing dynamic programming.
We state the recursive equations for backward induction in (6)
where S(u, k, z) denotes the value at node u with message
age k ∈ {1, 2, . . . ,K} and disparity z ∈ {0, 1}.
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Algorithm 3 Minimum-Cost Positive Influence Propagation in
Graphs with Cycles

1: procedure CYCLEMINCOST(V , E, s, d, uo, ud)
2: N+ := ∅; N− := ∅ � N+ and N− are the sets of nodes with

positive and negative permanent labels, respectively.
3: π+[uo] := 0; π−[uo] := ∞ � π+ and π− are temporary labels
4: for all u ∈ V − {uo} do
5: π+[u] := ∞; π−[u] := ∞
6: while true do
7: Find a node v ∈ V such that π[v] = min

i∈V −N+
j∈V −N−

{π+[i], π−[j]}

8: if π[v] = π+[v] then
9: π

′
+[v] := π[v]; N+ := N+ ∪ {v} � π

′
+, π

′
−: permanent labels.

10: else � π[v] = π−[v]

11: π
′
−[v] := π[v]; N− = N− ∪ {v}

12: if ud ∈ N+ then break
13: for all u ∈ V s.t. (v, u) ∈ E do � Update temporary labels
14: t := π[v] + dv,u
15: if sv,u = +1 then
16: if π[v] = π+[v] and u ∈ V −N+ and t < π+[u] then
17: π+[u] := t
18: pred[u][+1] := v � Predecessor of u on positive path
19: else if π[v] = π−[v] and u ∈ V −N− and t < π−[u] then
20: π−[u] := t
21: pred[u][−1] := v � Predecessor of u on negative path

22: else
23: if π[v] = π+[v] and u ∈ V −N− and t < π−[u] then
24: π−[u] := t
25: pred[u][−1] := v
26: else if π[v] = π−[v] and u ∈ V −N+ and t < π+[u] then
27: π+[u] := t
28: pred[u][+1] := v

29: P ∗ := [ud]; u := ud; positive := 1
30: while u �= uo do
31: temp := pred[u][positive]
32: Prepend temp to P ∗
33: positive := positive× stemp,u

34: u = temp

35: return the optimal path P ∗ and the minimum cost π
′
+[ud]

S(u, k, z)=min
v

{
E[du,v(k)]+pu,v(k)(c+δ(su,v−1)S(v, 1, z)

+ δ(su,v+1)S(v, 1, z̄))+(1−pu,v(k))min{θ, φ}
}

(6)

where 0̄ = 1 and 1̄ = 0. We denote θ and φ as follows:

θ = δ(su,v − 1)S(v, 1, z) + δ(su,v + 1)S(v, 1, z̄) + c (7)

φ = δ(su,v−1)S(v, k + 1, z)+δ(su,v+1)S(v, k+1, z̄) (8)

where θ corresponds to the case in which the next node on
the path is activated, whereas φ means that no activation takes
place. The boundary conditions are given as:

S(ud, k, 0) = 0, S(ud, k, 1) = ∞, ∀k ∈ {0, 1, . . . ,K} (9)

The minimum expected cost is then given by S(uo, 1, 0). The
steps of the proposed scheme are given in Algorithm 2.

VI. MINIMUM-COST INFLUENCE PROPAGATION FOR

GRAPHS WITH CYCLES

This section studies the minimum-cost influence propaga-
tion problem introduced in (1) for directed cyclic graphs.
As the graphs considered in this section may consist of
directed cycles, methods from Section IV cannot be applied to
tackle (1) directly. Hence, we present a modified Dijkstra-type
algorithm to solve (1) in Algorithm 3. It uses the same central
structure as the usual Dijkstra’s shortest path algorithm, which

�

�

�

(vx, vy)

(ux, uy)

du,v+ − (zx, zy)
du,z

Fig. 2. Grid network structure for the signed social graph.

maintains and updates a list of shortest paths from the source
to every other node in the graph (temporary labels π+ and π−).
The first difference in our algorithm is that we keep track of
the shortest path from the source to any node u ∈ V , for two
cases. The first case accounts for the cost of a path where u
is positively influenced by the source (π+(u)), whereas the
second case (π−(u)) represents negative influence.

At each iteration, the shortest temporary label is fixed as
a permanent label, represented by arrays π

′
+ and π

′
− (Lines

7-11). The temporary labels of the successors of the corre-
sponding node are then updated (Lines 13-28). An important
difference with the vanilla Dijkstra’s algorithm is that this
updating process takes the edge signs and path parity into
account. We also keep track of the decisions corresponding
to the optimal path at each node using the pred array. After
the iteration is over, the pred array is used to generate the
optimal path (Lines 30-34). It is important to note that the
optimal path in our model may include a cycle, unlike the
generalized shortest path algorithms for cyclic graphs. The
intuition behind this idea lies in the fact that traversing a cycle
may result in an even-parity path with a smaller cost than an
acyclic path, due to a sign change through the cycle. Note
that the time complexity of Algorithm 3 is asymptotically the
same as Dijkstra’s original shortest path algorithm.

VII. NUMERICAL RESULTS

We initially implement a small-scale network to motivate the
propagation model and the optimal policies. Next, we move to
a large-scale network and use the online Epinions dataset to
test and demonstrate the impact of our findings. To this end,
we first consider a grid network with directed acyclic links
given in Fig. 2. In order to prevent directed cycles, we entail
the following condition on the network structure: Edge (u, v)
exists only if ux ≤ vx, uy ≤ vy , and u �= v. That is, node u
can only influence the nodes in the shaded rectangle in Fig. 2.
Here, the source node is at the top left corner in green and
the destination node is at the bottom right corner in blue.

We consider a random graph where the probability of
existence for edge (u, v) is modeled by a Bernoulli random
variable with a parameter that is a monotonically decreasing
function of the distance between nodes u and v. We presume
that edges with a small ‖u− v‖ refers to close neighbors such
that individuals are frequently interacting with each other. We
note that this differs from the traditional notion of friendship,
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Total delay: 7.377

(a)

Total delay: 256.826

(b)

Total delay: 0.896

(c)

Fig. 3. Simulation results for cost minimization with message deterioration and ignorance with activation cost (a) 1, (b) 100, (c) 1 with distance-independent
costs, i.e., α = 0. Solid (dash-dotted) lines denote edges with a positive (negative) sign. The nodes visited by the optimal path are filled with black. A square
with an orange filling indicates activation as a result of ignorance, whereas a triangle with a green filling indicates activation without ignorance.

as two individuals may be frequently engaging in social in-
teractions with different ideologies such as political rivals. To
this end, we posit that this information is gathered from sensor
data that measures the frequency of one person interacting
with another person through social discussions or debates. This
can be obtained by various methods ranging from analyzing
the conversations in which one person mentions another or
processing the textual transactions in social media. Similarly,
a large ‖u− v‖ stands for a distant neighbor such that the
two persons know each other at an acquaintance level. We
model the propagation cost between nodes u and v as a random
variable du,v uniformly distributed over [0, dmax(u, v)]:

du,v ∼ U(0, dmax(u, v)) (10)
where dmax(u, v) is chosen as a monotonically increasing
function of the distance between the two nodes:

dmax(u, v) = β‖u− v‖α α, β ≥ 0 (11)
where ‖u−v‖ ≥ 1 for all u �= v. The parameter α is introduced
to capture the impact of social distances on physical costs
such as propagation delay. To this end, a large α increases the
difference between the propagation costs incurred by close
and distant neighbors. In effect, many real-world applications
suggest that propagating a message through distant neighbors
often takes more effort. On the other hand, when α is de-
creased, distant neighbors start being treated by the network
as close contacts as their propagation cost approaches to those.
All neighbors, whether socially distant or close, are treated as
equals when α is zero. Accordingly, α is termed the distance
impact parameter. Coefficient β is a design-specific weight
parameter that is equal for all node pairs. We denote the
probability of an edge having a positive sign by μ, which refers
to a friendship relation between the two nodes. Accordingly,
the probability of any edge having a negative label is μ̄ = 1−μ
in which case the two persons experience an antagonistic
relationship type. The default values for our simulations are
α = 1/2, β = 1, and μ = 1/2.

We now demonstrate the optimal policies for a 10-by-10
grid network. We introduce ignorance through an ignorance
probability pu,v(ku,v) which is the probability that node v will
ignore node u while u is attempting to transmit a message
of age ku,v to v. It is defined as a monotonically increasing
function of ku,v and the distance between the two nodes.
Fig. 3(a), (b), (c) show optimal paths for cost minimization
with message deterioration and ignorance following the steps
in Algorithm 2. By comparing Fig. 3(a) and (b), we see that
increasing the activation cost results in a lower number of
activations even though older messages are more likely to be

ignored. We note that in Fig. 3(a), since the activation cost is
low, a large number of nodes are activated even though the
message they receive has age 1. This is done in order to avoid
ignorance further down the path. Fig. 3(c) shows the optimal
path for the same setup except the costs do not depend on
distance; therefore, the optimal path is able to make bigger
jumps without incurring additional cost. However, we observe
that bigger jumps are more likely to result in ignorance, and
therefore a penalty for activation in the total cost.

We perform our large-scale simulations using the online data
from the Epinions social graph [22]. Epinions is a consumer
review website where users can indicate whether they trust
or distrust the opinions of other users. This signed social
graph has 131828 nodes and 841372 edges. Throughout our
evaluations, the source and destination nodes are selected
randomly. For every possible source-destination pair, we try
to find the optimal path and propagation policy such that
the source positively influences the destination. Since there
is currently no algorithm to compute influence propagation in
signed networks, we compare the results between our Dijkstra-
type algorithm and a naı̈ve myopic algorithm to find a low cost
positive path. We first implement the Dijkstra-type algorithm
in Algorithm 3 to find the paths that minimize the sum of
the costs between source and destination nodes. We assume
that the cost between nodes i and j is given by κ|i − j|. In
our simulations, we select κ = 0.1. The myopic algorithm is
referred to as shortest DFS. It is a depth first search algorithm
that traverses the graph starting from the source looking for
the destination. At each node, it selects the successor with
lowest cost. The procedure is recursively repeated until the
destination is reached. If a path from a node to the destination
is not found, the algorithm selects a successor of the node with
higher cost. For computational reasons, we limit the length of
the paths to 1500.

We randomly select 100 sources and 100 destinations.
We apply the two algorithms to compute the optimal paths
between all 10000 source-destination pairs. We then repeat
the process for 500 sources and 500 destinations. Finally, we
compute paths between 10000 sources and 10000 destinations
using Algorithm 3 and the min negative path algorithm. We
have observed that in this case, shortest DFS algorithm could
not terminate in a reasonable amount of computing time.

Tables I and II show statistics about the paths computed
using Algorithm 3 and the shortest DFS algorithm. In the
case with 100 sources and 100 destinations, using Algorithm
3 we find that each of the 100 sources is positively connected
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TABLE I
MINIMUM DELAY ALGORITHM (ALGORITHM 3) RESULTS WITH EPINIONS.

Number of Total number of Average Median Average Median
sources/dest. paths found path length path length path cost path cost
100/100 8830 54.450 40.0 3436.569 2488.4
500/500 218499 55.148 42.0 3419.907 2363.7

10000/10000 78029370 47.024 30.0 5027.842 4145.1

to 88.3 destinations on average. The average path length is
54.45 hops with an average path cost of 3436.57. On the other
hand, the positive paths found by the shortest DFS algorithm
has an average length of 660.73 hops with an average cost
of 17604.64. We observe that on average, the cost of the
paths found using Algorithm 3 is less than a fifth of the cost
of the paths found with shortest DFS. No path is found by
the shortest DFS algorithm for 8959 of the 10000 source-
destination pairs. We note that some of these pairs may in
fact be unreachable as a natural result of the graph structure,
i.e., the source and the destination may not be connected.
However, the same analysis shows that there exists only 1170
cases in which the destination is not reachable from the source
with Algorithm 3. Hence, the number of paths discovered by
the shortest DFS algorithm is only about a tenth of the paths
found by Algorithm 3. In the case with 500 sources and 500
destinations, we find from Algorithm 3 that each source is
positively connected on average to 436.998 destinations. In
other words, we can find a positive path for source-destination
pairs in 87.4% of cases. The average path length is 55.15 hops
with an average path cost of 3419.91. On the other hand, with
the shortest DFS algorithm the average length of the paths
is 726.95 hops with an average cost of 19134.18. As in the
previous case, the average cost of Algorithm 3 is less than a
fifth of the cost of the paths found using shortest DFS. We
similarly observe that shortest DFS can find about one tenth
of the paths that Algorithm 3 computes. Another significant
observation is that a randomly chosen source is very likely to
be positively connected to a random destination.

VIII. CONCLUSION

We have studied a signed social network in which friends
and foes are identified by positive and negative signs. We have
introduced a propagation model to influence a target person
infavor of an idea, a product, or an action. Persons are in-
fluenced in their decisions by the observations made available
to them. We provide the optimal propagation policies under
influence-centric constraints. We implement the proposed al-
gorithms in a controlled environment as well as using real-
world traces to understand the optimal policies in both small
and large-scale networks. We expect our study to open many
directions, including optimal multicast, multilevel relationship
or influence types, and the impact of other personal factors on
opinion forming and recommendation policies.
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