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Abstract—Communication networks are linked to and influenced by

human interactions. Socially-aware systems should integrate these com-

plex relationship patterns in the network design. This paper studies the

impact of friendship and antagonistic relationships between individuals

on optimal network propagation policies. We develop a network propa-

gation model for signed networks, and determine the optimal policies to

influence a target node with an opinion while minimizing the total number

of persons against it. We also provide extensions to this problem to

elaborate on the impact of network parameters, such as minimum-delay

propagation, while limiting the number of persons influenced against

the idea before reaching the target. We provide numerical evaluations

in a synthetic setup as well as the Epinions online social dataset. We

demonstrate that propagation schemes with social and influence-centric

constraints should take into account the relationship types in network

design.

I. INTRODUCTION

Social networks have received growing attention due to the in-
creasing popularity and capabilities of online networking enabled
by smart devices [1]. Friendship, trust, and influence relationships,
often reflected by the changes of user behavior [2], have been
the focus of considerable research effort [3]–[10]. Studies often
concentrate on networks with monolithic relationship types, in which
all relationships are friendship relations [2]–[5]. However, as pointed
in [6]–[10], real societies exhibit complex relationship structures
and it is important to identify relationship types in social networks
analysis.

Influence spreading in networks with a single relationship type
(friendship) has been considered in [4], [5], [11]–[14]. The im-
portance of identifying positive and negative relationship structures
for influence spread has recently been pointed out [15]. Reference
[15] identifies effective seeds for maximum influence spread in
signed networks from a random influence diffusion perspective. By
contrast, optimal propagation policies for networks with influence-
centric constraints, and positive and negative relationship types, have
not been studied in the existing literature. This is the goal of this
paper.

We consider the influence propagation problem in a signed network
as in Fig. 1. In this graph, positive and negative labels represent the
friendship and antagonistic relationships, respectively. We utilize the
principle of homophily, which states that persons favor the decisions
of the people that share similar interests with them, while opposing
the ideas of their foes [6], [16]. By this token, when a person observes
that an ideological foe is against an idea, she will go against this
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Fig. 1. Signed social network.

which means that she will support the original idea. This property has
been observed in the formation of European alliances before World
War I [17], [18].

In this paper, we develop algorithms to minimize propagation costs
as well as the number of negatively influenced users. We assign
a cost of propagation to each social link due to various social
and physical causes such as the interaction frequency, propagation
delay, strength of the relationship (social tie). This metric, which is
often a combination of various factors, is specified by the system
designer. For instance, we consider the metric of end-to-end delay,
and investigate the problem of influencing a target node positively
with minimum total propagation delay, which corresponds to the
fastest policy among the other possibilities. Our main contributions
in this paper are:

• We study the minimum cost network propagation problem for
positive influence while ensuring that the number of negatively
influenced users is below a given threshold.

• We determine the optimal propagation policies for minimizing
the number of negatively influenced users while influencing a
target person positively.

• We design algorithms to tackle cyclic as well as acyclic graphs.
• We demonstrate the results in an artificially created grid network

in addition to the online Epinions dataset.

We observe that in most cases it is possible to find a short path
between two nodes without influencing any node against an idea.
In a companion paper [19], we study the cost minimization problem
for influencing a target node positively without taking into account
the negative influences. On the other hand, this paper considers
the negatively influenced users and their impact on the influence
propagation policies, both for acyclic and cyclic graphs. These results
can be integrated to a number of social network applications in which
relationship types have a significant impact on system benefits.
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Algorithm 1 Forward Induction Dynamic Programming for Limiting the
Number of Negative Influences
1: procedure LIMITNEGATIVE(V , E, s, d, u

o

, u
d

, Q)
2: Assign the boundary conditions from (4)
3: for all u from u

o

to u

d

in topological order do

4: for q := 0 to Q do

5: Compute S(u, q, 0) and S(u, q, 1) using (2)-(3)
6: Record the decisions (next hop) ⇡(u, q, 0) and ⇡(u, q, 1) that

lead to S(u, q, 0) and S(u, q, 1)

7: return MAKEPATH(⇡, s, u
o

, u
d

, Q)
8: procedure MAKEPATH(⇡, s, u

o

, u
d

, q) . Compute a path
from u

o

to u

d

in the graph with edge signs s using the ⇡ decisions, for
a maximum of q negatively influenced users

9: P

⇤ := [u
d

]; u := u

d

; parity := 0
10: while u 6= u

o

do

11: temp := ⇡(u, q, parity)
12: if parity = s

temp,u

then parity := 0 else parity := 1

13: if parity = 1 then q := q � 1
14: u := temp

15: Prepend u to P

⇤

16: return P

⇤

II. SYSTEM MODEL

Let G = (V,E) be a graph with |V | nodes representing the social
network. Initially, we consider a directed acyclic graph. The model
is generalized to cyclic graphs in Section V. A directed edge exists
from node u to node v if (u, v) 2 E. The coordinates of a node
u 2 V are represented by the tuple (u

x

, u
y

). Throughout the paper,
we represent a node by its index and its coordinates interchangeably.
Each edge (u, v) is assigned a sign s

u,v

2 {�1, 1} to represent the
relationship type between persons u and v. In effect, s

u,v

reflects the
attitude of one person towards the other.

Initially, we activate a source node via a message from an external
source, news or a promotion. This node then passes the message to
one of its neighbors which results in a positive or negative influence.
Propagation continues throughout the network until the message
reaches the target node. Alternatively, this model can be interpreted as
a recommendation network, with a recommender making suggestions
to individual persons on a path, based on the preferences of their
contacts. A person is likely to be positively influenced by the
recommender if the previous contact is supporting an idea (candidate,
product) and is a friend, whereas if the previous contact is a foe, the
person is likely to oppose the idea.

We represent the cost of influence propagation between two
persons by a nonnegative weight. An example of such a cost is the
propagation delay between the two parties. The delay variable has
both social and physical interpretations. From a physical standpoint,
it is an important metric for assessing the QoS (quality of service) of
multi-hop sensor networks, and may depend on various quantities
such as the bandwidth, load, and physical distance between the
travelled links. From a social perspective, it represents the strength
of the actions of one person on influencing the other, positively
or negatively, with a smaller delay representing a quicker response.
From yet another perspective, it may be the frequency of interaction
between the two persons. We provide a formal definition of the
influence propagation problem in the sequel.

III. LIMITING THE NUMBER OF NEGATIVE INFLUENCES

The propagation model studied in the previous sections required
the destination node to be positively influenced while the dispositions
of intermediate nodes were not of concern. Real-life scenarios, on
the other hand, often necessitate one to avoid a path through which
a large number of intermediate nodes are influenced negatively. To
this end, we study the problem of how to influence the destination

Algorithm 2 Minimize the Total Number of Negatively Influenced
Persons
1: procedure MINNEGATIVE(V , E, s, u

o

, u
d

, N )
2: Set the boundary conditions from (8)
3: for all u from u

o

to u

d

in topological order do

4: for n := 1 to N do

5: Compute S(u, n, 0) and S(u, n, 1) using (6)-(7)
6: Record the decisions (next hop) ⇡(u, n, 0) and ⇡(u, n, 1) that

lead to S(u, n, 0) and S(u, n, 1)

7: return MAKEPATH(⇡, s, u
o

, u
d

, N )

positively while controlling the number of negatively influenced
intermediate nodes. Note that, assessing the influence type from the
source node to each of the intermediate nodes requires a forward
induction formulation, for which we develop a dynamic program. Let
P
u

denote the fragment of the path P that ends at node u. That is, P
u

is a path from u
o

to node u with the condition that if (u0, v0) 2 P
u

,
then (u0, v0) 2 P . The problem can be stated as:

min
P2P

X

u,v: (u,v)2P

d
u,v

s.t.
Y

u,v: (u,v)2P

s
u,v

= +1 (1)

����

⇢
u :

Y

u

0
,v

0: (u0
,v

0)2Pu

s
u

0
,v

0 = �1

�����  Q

where Q is the maximum number of negatively influenced intermedi-
ate nodes, and we focus on deterministic costs. We define S(u, q, 0)
as the value of the minimum-cost even-parity path connecting the
source node u

o

with node u when the number of negatively influ-
enced intermediate users are no more than q. Similarly, S(u, q, 1) is
the minimum-cost for the odd-parity path between u

o

and u with at
most q negatively influenced intermediate users. We then define the
recursive relations for the even and odd-parity paths as follows:

S(u, q, 0) = min
v:(v,u)2E

{d
v,u

+ �(s
v,u

� 1)S(v, q, 0)

+ �(s
v,u

+ 1)S(v, q � 1, 1)} (2)
S(u, q, 1) = min

v:(v,u)2E

{d
v,u

+ �(s
v,u

� 1)S(v, q � 1, 1)

+ �(s
v,u

+ 1)S(v, q, 0)} (3)

for u 2 V and 0  q  Q. The boundary conditions are:

S(u
o

, q, 0) = 0, S(u
o

, q, 1) = 1, 8q 2 {0, 1, . . . , Q} (4)

S(u
d

, Q, 0), can be determined using Algorithm 1.

IV. MINIMIZING THE NUMBER OF NEGATIVE INFLUENCES

We next consider a variation of the influence propagation problem
in Section III. Specifically, we focus on minimizing the number of
negatively influenced users subject to a maximum number of hops
allowed before reaching the destination.

min
P2P

����

⇢
u :

Y

u

0
,v

0: (u0
,v

0)2Pu

s
u

0
,v

0 = �1

�����

s.t.
Y

u,v: (u,v)2P

s
u,v

= +1, |P |  N (5)

In order to formulate the dynamic program we define S(u, n, 0) as
the number of negatively influenced users through the even-parity
path between the source node u

o

and node u where no more than
n hops are used to reach u. Similarly, we let S(u, n, 1) denote the
number of negatively influenced users through the odd-parity path
between u

o

and u with at most n hops from u
o

to u. Then the
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Algorithm 3 Minimizing the Number of Negatively Influenced
Persons in Graphs with Cycles
1: procedure CYCLEMINCOST(V , E, s, d, u

o

, u
d

)
2: N+ := ?; N� := ? . N+ and N� are the sets of nodes with

positive and negative permanent labels, respectively.
3: ⇡+[u

o

] := 0; ⇡�[u
o

] := 1 . ⇡+ and ⇡� are temporary labels
4: for all u 2 V � {u

o

} do

5: ⇡+[u] := 1; ⇡�[u] := 1
6: while true do

7: Find a node v 2 V such that ⇡[v] = min
i2V �N+
j2V �N�

{⇡+[i],⇡�[j]}

8: if ⇡[v] = ⇡+[v] then

9: ⇡

0
+[v] := ⇡[v]; N+ := N+ [ {v} . ⇡

0
+ and ⇡

0
� are permanent

labels.
10: else . ⇡[v] = ⇡�[v]
11: ⇡

0
�[v] := ⇡[v]; N� = N� [ {v}

12: if N+ \N� = V then break

13: for all u 2 V s.t. (v, u) 2 E do . Update temporary labels
14: if s

v,u

= +1 then

15: if ⇡[v] = ⇡+[v] and u 2 V �N+ and ⇡[v] < ⇡+[u] then

16: ⇡+[u] := ⇡[v]
17: pred[u][+1] := v . Predecessor of u on positive path
18: else if ⇡[v] = ⇡�[v] and u 2 V �N� and ⇡[v] + 1 < ⇡�[u]

then

19: ⇡�[u] := ⇡[v] + 1
20: pred[u][�1] := v . Predecessor of u on negative path
21: else

22: if ⇡[v] = ⇡+[v] and u 2 V �N� and ⇡[v] + 1 < ⇡�[u] then

23: ⇡�[u] := ⇡[v] + 1
24: pred[u][�1] := v

25: else if ⇡[v] = ⇡�[v] and u 2 V �N+ and ⇡[v] < ⇡+[u] then

26: ⇡+[u] := ⇡[v]
27: pred[u][+1] := v

28: P

⇤ := [u
d

]; u := u

d

; positive := 1
29: while u 6= u

o

do

30: temp := pred[u][positive]
31: Prepend temp to P

⇤

32: positive := positive⇥ s

temp,u

33: u = temp

34: return the optimal path P

⇤

recursive relations for the even and odd-parity paths are given as:

S(u, n, 0) = min
v:(u,v)2E

{�(s
u,v

� 1)S(v, n� 1, 0)

+ �(s
u,v

+ 1)(S(v, n� 1, 1) + 1)} (6)
S(u, n, 1) = min

v:(u,v)2E

{�(s
u,v

� 1)(S(v, n� 1, 1) + 1)

+ �(s
u,v

+ 1)S(v, n� 1, 0)} (7)

where u 2 V and n = 1, . . . , N . The maximum number of hops
allowed to reach the destination is given by N . We define the
boundary conditions for this problem as follows:

S(u
o

, n, 0) = 0, S(u
o

, n, 1) = 1, 8n 2 {0, 1, . . . , N} (8)

Lastly, the answer that refers to the even-parity path with the
minimum number of negatively influenced users upon reaching the
destination with no more than N hops is given by S(u

d

, N, 0).
Algorithm 2 provides the steps of the forward induction dynamic
program formulated to find the optimal path for influencing a target
node positively while minimizing the number of negatively influenced
persons on the path.

V. MINIMUM-COST INFLUENCE PROPAGATION FOR GRAPHS
WITH CYCLES

In this section, we consider the minimum-cost influence propaga-
tion problem introduced in (5) for directed cyclic graphs. Techniques
from Section IV cannot be applied directly here since the graphs

u

z

v

(v
x

, v
y

)

(u
x

, u
y

)

d
u,v+ � (z

x

, z
y

)
d
u,z

Fig. 2. Signed grid network. Source and destination nodes are indicated by
green and blue colors, respectively.

may contain directed cycles. To this end, we propose a Dijkstra-type
algorithm to solve (5) in Algorithm 3. We maintain and update a
list of shortest paths from the source to each node in the graph by
the temporary labels ⇡+ and ⇡�. However, unlike the conventional
Dijkstra’s algorithm, we keep track of the shortest path from the
source to any node u 2 V for two different situations: ⇡+(u)
represents the number of negatively influenced users on a path where
u is positively influenced by the source, whereas ⇡�(u) represents
negative influence.

The shortest temporary label is assigned as a permanent label at
each iteration. The permanent labels are implemented by arrays ⇡

0
+

and ⇡
0
�. Then the temporary labels of the successors are updated, by

taking into account the edge signs and path parity. The decisions at
each node are stored in the pred array, which is then used to generate
the optimal path.

VI. NUMERICAL RESULTS

We first consider a grid network with directed acyclic links given
in Fig. 2. The following condition is imposed to prevent directed
cycles: Edge (u, v) exists only if u

x

 v
x

, u
y

 v
y

, and u 6= v. In
other words, u can influence the nodes from the shaded rectangle
in Fig. 2. The probability that an edge (u, v) exists is given by
a Bernoulli random variable whose parameter is a monotonically
decreasing function of the distance between u and v. Edges for which
ku� vk is small refers to close neighbors with frequent interaction.
Unlike the conventional notion of friendship, we assume that two
individuals may be frequently interacting even if they have an antag-
onistic relationship, such as political rivals with opposing ideologies.
Accordingly, a distant neighbor or an acquaintance is represented by
a large ku� vk. The propagation cost between u and v is a random
variable d

u,v

uniformly distributed over [0, d
max

(u, v)]:

d
u,v

⇠ U(0, d
max

(u, v)) (9)

in which d
max

(u, v) is a monotonically increasing function of the
distance between u and v:

d
max

(u, v) = �ku� vk↵ ↵,� � 0 (10)

where ku� vk � 1 for all u 6= v. The impact of social distances on
physical costs is indicated by the parameter ↵. The propagation costs
for close and distant neighbors become more distinct larger values
of ↵. Distant neighbors are treated comparatively to close neighbors
as ↵ is decreased, and are treated as equals for ↵ = 0. We term
↵ as the distance impact parameter. We introduce a design-specific
weight coefficient �. The probability of a positive label for any edge
is µ, whereas the probability of a negative label is µ̄ = 1 � µ.
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Total delay: 1.0647, 3 negatively influenced nodes

(a)

Total delay: 1.6411, 1 negatively influenced nodes

(b)

Total delay: 3.3483, 0 negatively influenced nodes

(c)

Fig. 3. Optimal policies for the minimum cost with at most K negatively influenced nodes where (a) K = 10, (b) K = 2, (c) K = 0. Solid (dash-dotted)
lines denote edges with a positive (negative) sign. The nodes visited by the optimal path are filled. A red diamond indicates a negatively influenced node.

1 negatively influenced nodes, 9 hops

(a)

2 negatively influenced nodes, 7 hops

(b)

4 negatively influenced nodes, 5 hops

(c)

Fig. 4. Simulation results for negative influence minimization with at most K hops where (a) K = 9, (b) K = 7, (c) K = 5. Solid (dash-dotted) lines
denote edges with a positive (negative) sign. The nodes visited by the optimal path are filled, whereas a red diamond indicates a negatively influenced node.

Unless otherwise stated, our default values are ↵ = 1/2, � = 1, and
µ = 1/2. The size of our grid network is 10-by-10.

Fig. 3(a), (b), (c) show optimal paths that minimize total cost while
negatively influencing no more than K nodes from Algorithm 1. As
can be observed, a lower K results in a smaller number of feasible
paths and the minimum total cost potentially increases. In addition,
we see that the optimal path in Fig. 3(a) negatively influences only
3 nodes when it can actually influence K = 10 nodes, implying that
it is not always optimal to negatively influence as many nodes as
possible, and increasing K does not always result in a lower total
cost.

Fig. 4(a), (b), (c) show optimal paths that minimize the number
of negatively influenced users in at most K hops via Algorithm 2.
We observe that lowering the value of K results in the elimination
of some of the feasible paths and the optimal path is compelled to
negatively influence more nodes.

In addition to the small-scale implementations that reflect our
intuition, we also perform large-scale simulations using the online
signed network topology from the Epinions consumer review website
[20]. It is a graph with 131828 nodes and 841372 edges. We select
the source and destination nodes randomly. Then we try to find an
optimal path and propagation policy for each source-destination pair.
We implement Algorithm 3 which seeks to minimize the number of
negatively influenced nodes on a path between source and destination
nodes. The temporary labels of each node at each iteration are updated
to reflect the minimum number of negatively influenced nodes from
the source to the node.

First, 100 sources and 100 destinations are selected randomly.
Algorithm 3 is applied to find the optimal paths for all the 10000
source-destination pairs. These steps are then repeated for 500
sources and 500 destinations, and later for 10000 sources and 10000
destinations.

The results for the implementation of Algorithm 3, i.e., minimizing
the total number of negatively influenced persons on the Epinions

TABLE I
RESULTS FOR ALGORITHM 3 WITH EPINIONS.

Number Total number Average Median Negatively in- Negatively in-
of of path path fluenced users fluenced users

sources/dest. paths found length length (average) (median)
100/100 8830 4.023 4.0 0.096 0.0
500/500 218499 4.097 4.0 0.057 0.0

10000/10000 78029370 4.646 5.0 0.123 0.0

dataset, is given in Table I for 100, 500 and 10000 randomly selected
sources and destinations. Importantly, we observe that even for a very
large number of source and destination pairs, at least half of the paths
have zero negatively influenced nodes. This is indicated by the fact
that the median number of negatively influenced people is 0. The
average number of hops in each path found by Algorithm 3 is less
than 5. This justifies our intuition that it is actually possible to find
a relatively short path from one node to another purely dominated
by friendship (homophily) relations. In effect, our findings show that
in general any node can influence another node positively within a
small number of hops.

VII. CONCLUSION

In this paper, we have considered a signed network in which
signs represents the positive and negative relationships in a human
community. Persons are influenced by the relationship structures
while responding to their neighbors’ decisions. We have proposed
a network propagation scheme to influence a target person positively,
and study how to reduce the number of negatively influenced users
while doing so. We have implemented the proposed algorithms in an
artificially created small dataset and using the large-scale Epinions
signed network topology available online. Future directions include
networks with more than two and/or fuzzy relationship types, and
the extension of the point-to-point scheme to multicast influence
propagation schemes.
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