
Duet: Library Integrity Verification for Android
Applications

Wenhui Hu, Damien Octeau, and
Patrick McDaniel

Department of Computer
Science and Engineering

Pennsylvania State University
University Park, PA, USA

{whu, octeau, mcdaniel}@cse.psu.edu

Peng Liu
College of Information

Sciences and Technology
Pennsylvania State University

University Park, PA, USA
pliu@ist.psu.edu

ABSTRACT
In recent years, the Android operating system has had an
explosive growth in the number of applications containing
third-party libraries for different purposes. In this paper,
we identify three library-centric threats in the real-world
Android application markets: (i) the library modification
threat, (ii) the masquerading threat and (iii) the aggres-
sive library threat. These three threats cannot effectively be
fully addressed by existing defense mechanisms such as soft-
ware analysis, anti-virus software and anti-repackaging tech-
niques. To mitigate these threats, we propose Duet, a library
integrity verification tool for Android applications at appli-
cation stores. This is non-trivial because the Android ap-
plication build process merges library code and application-
specific logic into a single binary file. Our approach uses
reverse-engineering to achieve integrity verification. We im-
plemented a full working prototype of Duet. In a dataset
with 100,000 Android applications downloaded from Google
Play between February 2012 and September 2013, we verify
integrity of 15 libraries. On average, 80.50% of libraries
can pass the integrity verification. In-depth analysis in-
dicates that code insertion, obfuscation, and optimization
on libraries by application developers are the primary rea-
sons for not passing integrity verification. The evaluation
results not only indicate that Duet is an effective tool to
mitigate library-centric attacks, but also provide empirical
insight into the library integrity situation in the wild.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection—Invasive Software

Keywords
Smartphone; Android; third-party library; library-centric
security threat; library integrity verification

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WiSec’14, July 23–25, 2014, Oxford, UK.
Copyright 2014 ACM 978-1-4503-2972-9/14/07 ...$15.00.
http://dx.doi.org/10.1145/2627393.2627404.

1. INTRODUCTION
The Android operating system holds the biggest market

share in the world of smartphones [22]. For such a suc-
cess, third-party applications play an important role in the
whole ecosystem [14]. These application developers inte-
grate libraries into their applications for different purposes.
For example, advertising-supported free applications have
become popular in the world of Android. An advertising
network distributes advertising libraries. Third-party ap-
plication developers collect revenue by adding these adver-
tising libraries into their applications. Pearce et al. found
that 49% of applications in their dataset are supported by
advertising libraries [39].

Besides advertising libraries, Android application devel-
opers also include other libraries into their applications. For
example, Zebra crossing (ZXing) [9] is a library that pro-
vides functionality of 1D/2D barcode image processing. An-
other example is the license verification library (LVL) [26]
by Google. With LVL, applications can query Google Play
to obtain their license status at runtime.

Three Library-Centric Security Threats: Unfortu-
nately, third-party libraries that come with applications can
be modified to be malicious. For example, AntiLVL [11] is a
free tool available online that modifies third-party libraries
in applications in order to subvert standard license protec-
tion methods such as Amazon Appstore DRM and Verizon
DRM. Such attacks require reverse-engineering and a build
process, which is called a repackaging process.

Besides modifying existing libraries, attackers could also
create a new malicious library. To make people believe this
is a good library, attackers usually would do masquerading.
For example, use the same namespace that is used by good
libraries. For instance, as reported in [46], DroidKungFu, a
famous malware, uses names such as com.google.ssearch and
com.google.update to pretend to be published by Google for
legitimate and benign purposes.

In addition to the modification threat and the masquerad-
ing threat mentioned above, it has also been proven that
some legitimate third-party libraries have aggressive behav-
iors such as collecting device owner’s email address. Based
on the report from FireEye Blog [43], one popular adver-
tising library that has aggressive behaviors has been used
in over 1.8% of the applications in their dataset and these
affected applications have been downloaded more than 200
million times in total. As reported in the followup news [44],
benign application developers remove problematic third-
party libraries after being notified.



Limitation of Existing Techniques: The three library-
centric security threats mentioned above cause very serious
consequences in the real world. However, we find they can-
not be effectively fully addressed by existing defense mech-
anisms. Although software analysis [30, 19], anti-virus soft-
ware [5, 3] and anti-repackaging techniques [15, 45] can de-
tect some malicious behaviors in library code, it is hard to
tell whether library providers or application developers are
the offenders because the application developers can modify
library code during the development process.

In the case of the modification threat, the application de-
veloper could blame the library provider for malicious li-
brary behaviors, even though the application developer is
the real attacker and the library provider is a victim of the
attack. Regarding the masquerading threat, the application
developer could also blame the library provider for malicious
library behaviors, even though the real attacker is the ap-
plication developer and the victim is the library provider.
Regarding the aggressive library threat, the library provider
could blame the application developers for aggressive library
behaviors because the developer can modify the library. In
this case, the real attacker is the library provider and the
victim is the application developer.

However, it is important to figure out the offenders in
case of library-centric security threats in order to protect
the reputation of benign stakeholders. A good reputation is
important to both benign application developers and benign
library providers in the ecosystem. In most cases, the appli-
cation developers do not know all behaviors of the library
they use while library providers have no control over who
will use their library. There is a need for a technique to pro-
tect the reputation of the benign party when library-centric
security threats happen.

Research Objective: To address the limitation of ex-
isting techniques, we develop an integrity verification tech-
nique. When Android applications are submitted to Android
application stores, testing the integrity of third-party li-
braries in applications can effectively address library-centric
threats. Third-party libraries that become malicious af-
ter modifications and masquerading libraries cannot pass
library integrity verification. This guarantees that the li-
brary provider is not the attacker. However, if the malicious
behaviors come from aforementioned legitimate and prob-
lematic third-party libraries, benign application developers
should be protected. If these problematic libraries pass li-
brary integrity verification, it proves that the malicious be-
haviors in these libraries are from the library providers, in-
stead of application developers.

Verifiers for library integrity: How to verify the in-
tegrity of libraries relies heavily on who is going to do the
verifications. It is clear that we have at least two candidates:
application developers and application stores. Obviously, it
is straightforward for application developers to verify the
library integrity during the build process. For example, de-
velopers can verify library integrity by comparing libraries’
checksums with checksums from the library providers. How-
ever, letting the developers do verification cannot effectively
fully address the three library-centric security threats be-
cause developers can modify the library. As a result, the
limitations of existing techniques are still not addressed.

Realizing that letting developers do verification is not
enough, we look into the reason behind it: application devel-
opers and third-party library providers are different stake-

holders in the ecosystem. Their code have different inten-
tions while they do form a symbiotic relationship. There-
fore, a suitable verifier for library integrity cannot be its
symbiont, the application developer. We find if stores can
do the verification successfully, the three library-centric se-
curity threats can be very well addressed, due to the same
reasons in Research Objective.

Challenges for store side verification: There are
three major challenges for the integrity verification of An-
droid application libraries by application stores. First, in
the Android application build process, library code and
application-specific logic are “blended into pieces”, mixed
and merged into a single binary file. The application store
cannot tell whether the library has been modified before
compilation by reading the application binary directly. Sec-
ond, in most cases, the application store cannot get the
source code of Android applications to repeat the Android
application compilation process for integrity verification. Fi-
nally, library files reverse-engineered from the application
binary are different from original library files collected from
their provider, so that the application store cannot just use
reverse engineering for integrity verification.

Our approach: To overcome these challenges, we pro-
pose Duet : a library integrity verification tool for Android
applications at application stores. Duet first collects the
original library files from their providers. With the observa-
tion that reverse-engineered library files go through a build
process and a reverse-engineering process, Duet takes a novel
mirroring approach in which original files also go through a
build process and a reverse-engineering process in order to
create reference files. Library files reverse-engineered from
applications that use unmodified libraries are exactly the
same as reference files. Duet builds the reference database
that stores all these reference files and their digests (check-
sums). In particular, we use Dare [37] as our reverse-
engineering tool. The reverse-engineering is also called re-
targeting in this paper.

Duet need to use original library files to build the refer-
ence database. This assumes that third-party libraries used
for Android applications are public. Considering that ap-
plication developers can access libraries, it is reasonable to
assume that other stakeholders in the ecosystem can also
access those library files directly from the providers. With
the reference database, application stores can then directly
verify library integrity in applications.

Our Main Contributions: Our main contributions
are as follows:

• To the best of our knowledge, Duet is the first tech-
nique/tool for application stores that can verify the
integrity of libraries used in Android applications.

• We ran Duet on 100,000 applications to test integrity
of 15 different libraries. The results indicate that Duet
is an effective solution for library integrity verification
in Android applications.

• We present in-depth analysis that illustrate the library
modification by application developers in the real world.

2. BACKGROUND AND PROBLEM STATE-
MENT

2.1 Background
2.1.1 Libraries in Android

The libraries on a smartphone can be broken down into
two categories. Some libraries enable execution of the op-



classes.dex

Header

Constant Pool

Data

Lib ClassN 
definition

Class1 definition

Java
Compiler

dx

Java
Source Code
(.java files)

Class1.class

Data

Constant Pool
Class Info

ClassN.class

Data

Constant Pool
Class Info

Lib Class1.class

Data

Constant Pool
Class Info

Lib ClassN.class

Data

Constant Pool
Class Info

Lib
(.jar file)

Figure 1: Compilation process for Android applica-
tions.

erating system. The second type of libraries are for exe-
cution of applications. Android relies on about a hundred
dynamically-loaded libraries for the execution of the oper-
ating system. Some of the libraries are in fact other open
source projects, such as Bionic [4]. The other libraries are
generated within Android Open Source Project (AOSP) [2].
For instance, libbinder.so is the Binder library for Android
interprocess communication. All these libraries are merged
together within AOSP, and are made available by the An-
droid software stack. Since these libraries are part of the
Android framework, the operating system providers should
verify the integrity of these libraries in various stages of the
build process. In this paper, we do not discuss attacks on
these libraries or the verification of their integrity.

This paper focuses on the second type of libraries, namely
libraries for Android applications. In practice, these libraries
are published by their creators in .jar or .class files. These
libraries normally contain one or several packages that are
collections of .class files, with each package defining a names-
pace for the .class files it contains. The Android application
developers then use these libraries to build applications. The
three library-centric security threats introduced in Section 1
target these libraries. In this paper, we propose a new in-
tegrity verification technique for these libraries, and this new
technique can address these three threats.

2.1.2 Android Application Compilation
Android applications are developed in Java but compiled

to Dalvik bytecode [10]. This bytecode runs in a platform-
specific Dalvik Virtual Machine (DVM), which is optimized
for devices with (relatively) low computing resources (e.g.,
smartphones and tablets). The compilation is generally a
two-step process, as shown in Figure 1. In step one Java
source code (.java files) are compiled into .class files. The
libraries are already in the format of .class files coming from
the library providers. Here, the developer could do some
post-processing. In step two, all .class files are compiled
into one .dex file. During the compilation process, the Java
.class files composing the application are converted to a sin-
gle .dex file. The main differences between .class files and
the .dex file are as follows. The constant pools containing

the constants used by each class are merged into a single
.dex constant pool, thereby avoiding a lot of constant repli-
cation. Other changes include: register architecture, control
flow structure, ambiguous primitive types, null references,
and comparison of object references [19, 37].

During the above compilation process, .class files are ei-
ther generated based on application source code or directly
from imported libraries. Then the Dalvik dx compiler con-
sumes .class files, and recompiles them to Dalvik bytecode,
which is a .dex file. During the compilation process, even the
unused .class files (for both application logic and libraries)
are compiled into the .dex file.

The .dex file, and other files required by the application,
such as resources, assets, certificates, and manifest file, are
then put into a ZIP file formatted package based on the
JAR file format. This package is called Android application
package (APK) file.

2.1.3 Library Post-Processing
In the real world, libraries are often not directly compiled

to Dalvik bytecode. Instead, some post-processing is done
before the libraries are compiled into the .class file. Post-
processing for Java .class files include shrinkage, optimiza-
tion, and obfuscation. Some libraries are post-processed by
library providers before release. In this paper, we call this
type of post-processing Provider’s Post-Processing on the li-
brary. Some application developers perform post-processing
on libraries before compilation of Android applications. In
this paper, we call this type of post-processing Developer’s
Post-Processing on the library. Provider’s Post-Processing
helps the library providers protect source code against re-
versing engineering. Developer’s post-processing leads to
not passing the library integrity verification as discussed in
Section 6.

2.2 Security Model
Trust Model: We assume application stores and security

companies that use Duet are trustworthy. We also trust the
library provider to provide libraries without modifications.
We assume that library providers provide all versions of their
libraries.

For those libraries that require the application developers
to do post-processing, Duet cannot perform integrity veri-
fication. Google In-App Billing [24] is such a library. It is
published as source code. Application developers are guided
to modify the code and perform post-processing on it. This
is a special category of libraries. Most libraries are published
in bytecode and Duet can therefore be used to verify their
integrity.

Reflection does not have any influence on the correctness
of Duet. The integrity verification decision for a library is
based on whether the library has been modified. Thus, cases
where reflection is used as part of a library or to invoke li-
brary functions from the application do not affect the ver-
ification process. If the library code is modified by the ap-
plication developer in a way that replaces API calls with re-
flection (e.g., for obfuscation), then the library cannot pass
the integrity verification.

In this paper, we only support the official Android SDK
and only support the existing compiler options. Duet can
be extended to support customized SDK and customized
compilers.

Threat Model (Assumptions): This work will focus
on the three library-centric security threats mentioned in



Section 1, namely the library modification threat, the mas-
querading threat, and the aggressive library threat. We
assume libraries used for Android applications are public.
Other stakeholders besides application developers can also
access those libraries directly from the providers. To the
best of our knowledge, most libraries for Android applica-
tions are freely available online; a small portion of libraries
are available online with a license fee. See Section 5.1 for
demographic study.

For those libraries that are not published online, we con-
sider them as proprietary libraries. Duet cannot perform
integrity verification for these libraries because Duet cannot
collect the original files for them. In such situations, appli-
cation developers should take the responsibility for library-
centric threats. If these application developers and library
providers would like to verify the library integrity in An-
droid applications, they can either use Duet themselves, or
provide the libraries to third party organizations for verifi-
cation.

Applications can also load libraries during runtime. Duet
cannot be used to verify library integrity in these cases be-
cause this happens dynamically. Application stores could
use other techniques such as [40] for analyzing unsafe and
malicious dynamic code.

Currently, Duet does not support native libraries. Native
code is only used in about 6.3% of Android applications
[19]. In order to verify the integrity of native libraries, it is
possible to simply compare the original library files with the
files within the .apk file directly because the native library
will not be processed by the dx compiler.

Note that the presence of a modified library does not nec-
essarily imply that an attack has been performed. For ex-
ample, developers sometimes perform obfuscation on library
code. We argue that developers have incentives not to per-
form such modifications. It is usually possible to avoid mod-
ifying library code even in the case of obfuscation, since ob-
fuscating tools can be set up not to modify certain parts of
the code of an application. In cases where application de-
velopers choose to modify the library for benign purposes,
they prevent integrity verification. As a result, they may be
deemed responsible if a library exhibits malicious or aggres-
sive behaviors.

2.3 Problem Statement
Although developers can verify the library integrity, let-

ting developers perform integrity verification cannot effec-
tively address the three library-centric security threats. It
is clear that application store side verification is necessary
and critical.

Problem Statement: How to enable application stores to
do library integrity verification without cooperating with ap-
plication developers (without knowing the source code of
applications).

2.4 Use Cases
In the Smartphone ecosystem, different stakeholders would

like to see library integrity verification results for various
purposes. Library providers care about the library integrity
because the library modification threat hurts the providers’
benefits. Library providers also care about the masquerad-
ing threat because malware in their libraries could hurt their
reputations. Because the library providers have no control
of the application development process, they need store side
library verification technique. In special cases, the applica-

tion store is also the library provider, for instance Amazon
and Google. In fact, Amazon is the victim of the library
modification threat [11, 15] and Google is the victim of the
masquerading threat [46]. Hence, they have motivations to
perform store side library integrity verification to protect
themselves.

We find that application developers also need store side li-
brary verification. Although application developers can ver-
ify the library integrity during the build process, the store
still has no information about the library integrity status. In
the case of the aggressive library threat [43], benign appli-
cation developers need library integrity verification to prove
their innocence [44]. Of course, developers can submit all
source code and build configuration for repeating the build
process as evidence. However, it is not only a bad idea to
give source code to others, but also an extra burden for
developers to keep source code and configuration for each
version of applications. The store side verification can solve
all these concerns.

3. SYSTEM OVERVIEW
3.1 Naive Solutions and Challenges for Store

Side Verification
We find store side library integrity verification is non-

trivial because the store has no control about the Android
application build process. Here, we discuss several naive
solutions and explain why they cannot work. One simple
method to verify library integrity is to collect library files
from the application package, and compare these files with
the library files that are from the library provider. However,
this method cannot work for Android applications. During
the compilation of Android applications, the .class files of
both libraries and application logic are merged together into
one single .dex file. Fields and methods from each .class file
are separated, and stored in different locations of the .dex
file. Because each application has various .class files as ap-
plication logic, the compilation process generates different
.dex files for different applications even if they use the same
library. To verify one must locate every piece of the library
and put together each .class file. However, this is a very
complicated thing to do. That is without reverse engineer-
ing, there seems to be no way to collect the library file.

The second method to achieve library integrity verifica-
tion is to repeat the compilation process of applications. If
we have the java source code or the .class files of one An-
droid application, we can repeat the Android application
compilation process to generate the .dex file. Then, we can
verify the library integrity by comparing the generated .dex
file with the .dex file in the application package. However,
this method requires source code or .class files of this appli-
cation. In the real world, we cannot collect these data for
millions of applications. In practice, it is very difficult to
convince most application developers to release source code
or .class files. Therefore, this method can only be used in
special cases when source code or .class files are available.

Therefore, we have to use reverse engineering technology
to get the .class files of libraries from .dex files for library
integrity verification. Another method is to compare the
.class files after reverse engineering with the original library
files. The reverse-engineered (retargeted) files are function-
ally equivalent to the original files, however they are not
exactly the same. For example, original files may include
debugging information, which is not necessary for their nor-



Module B

Android 
Applications
(.apk files)

Library Digest and 
File Digest

retargeting

Module A

Library Provider
Original library 

(.class files)

Reference 
Database

compilation
retargeting

Canonical File 
Digest (per .class 

file)

Canonical Library 
Digest (whole 

library)

Library Provider
Original library 

(.class files)
compilation
retargeting

Module C

Library integrity 
verification

Figure 2: Store Side Library integrity verification:
system overview.

mal execution. This debugging information is not recovered
by the retargeting process. As a consequence, the retargeted
files cannot directly be compared to the original library files
from the library providers.

Challenges: To address this problem, we need to handle
the following challenges:

• C1: The Android application compilation process mixes
.class files of library and application logic together.
The application store cannot verify the integrity of the
libraries by reading the binaries of the .dex files.

• C2: The application store cannot get the source code
of the application logic, and the application store has
no knowledge of development configuration for each
application. Therefore, repeating the compilation pro-
cess of applications to achieve integrity verification of
libraries is not feasible.

• C3: Library files from reverse engineering are different
from original library files collected from their provider.
Therefore, comparing .class files after reverse engineer-
ing and .class files before compilation to achieve in-
tegrity verification is not feasible.

3.2 Our Idea (Double Reverse-Engineering)
To overcome these challenges, we have to collect library

files from the applications by using reverse-engineering.
After that, we also need a correct method to compare
the reverse-engineered library files with the original files
from library providers. With the observation that reverse-
engineered library files go through a build process and a
reverse-engineering process, Duet takes a novel mirroring
approach in which original files also go through a build pro-
cess and a reverse-engineering process to create reference
files. Library files reverse-engineered from applications that
use unmodified libraries are exactly the same as reference
files. Duet builds the reference database that stores all these
reference files and their digests (checksums).

3.3 Architecture of Duet
As shown in Figure 2, Duet has three major modules.

Module A builds the reference database; Module B processes
applications; Module C compares results from Module B
with the reference database for integrity verifications.

In Module A, Duet first downloads original libraries from
the library providers. Then, Duet compiles original libraries
to Dalvik bytecode and retargets them to get the retargeted
.class files, which are the reference files. Duet merges the
content of all .class files of a given library into a single file
and calculates the hash value of this file. This value is called
canonical library digest. Duet also calculates a hash value

for each .class file of this library. These values are called
canonical file digests. We explain how Duet uses these di-
gests when we explain Module C. The canonical library di-
gest, canonical file digests, and reference files are all stored
into the reference database.

For an Android application, Module B collects retargeted
.class files of its libraries after retargeting. For a given li-
brary, retargeted .class files are used to calculate its library
digest after being merged together. The library digest is a
hash value. For every .class file of the library, Module B
calculates its file digest that is also a hash value.

Then, Module C first compares the library digest with
canonical library digests in the reference database. Once a
match is found, the library passes the integrity verification.
Otherwise, Module C compares all file digests with canonical
library digests in the reference database. If every file digest
can match, the library also passes the integrity verification.

Compared to file digests, calculation of library digest re-
quires only one hash calculation. Hence, it is fast. Finding a
match with canonical library digest in the reference database
means that the library has not been modified. It requires
that there are neither extra .class files nor missing .class
files in libraries.

However, the above ideal situation does not always hap-
pen in the real world. One possible situation is that some
application developers use a shrinker to remove the unused
.class files before Android application compilation in order
to reduce the size of the application. Missing some .class
files cannot lead to meaningful security attacks. Hence, Duet
uses file digest comparison to tolerate it.

Another situation in the real world is that several libraries
from the same provider might share the same namespace.
For example, Android support library [25] has three different
libraries in the directory “/android/support/”. One applica-
tion might contain all these three libraries. We find this
is happening in the real world. Duet also uses file digest
comparison to tolerate this situation.

4. DESIGN AND IMPLEMENTATION
4.1 Reverse-Engineering Requirements

Our double reverse-engineering idea requires the following
two properties which enable our design to work very well.

Property 1: Distinctiveness. Different libraries compiled
into Android applications should get retargeted to dif-
ferent code. In other words, it should be possible to
distinguish the code from different libraries after the
retargeting process.

Property 2: Identity. If the same library is compiled into
different applications, retargeting these applications
should yield bytecode for the library that is identical
across all applications (Identity guarantee). In other
words, the retargeting process enables us to recognize
when a library has been integrated into different ap-
plications.

We select the Dare tool [37] as our reverse-engineering tool
because we find that it provides these two guarantees. The
first one is trivial. Different libraries A and B have seman-
tically different Java bytecode, which gets compiled to se-
mantically different Dalvik bytecode. The Dare retargeting
process is formally defined and ensures that code semantics
is preserved from Dalvik to Java bytecode. Thus, retarget-
ing the Dalvik bytecode of A and B results in different Java
bytecode.



Further, Dare provides identity guarantees. When a given
library is compiled into different applications, it get com-
piled to very similar bytecode. The class names, field names,
method names and the structure of the method code are
identical. The only difference occurs when an instruction
references a constant (e.g., integer or string constant) by us-
ing an index to a constant pool element. Since the Dalvik
compilation process merges all Java constant pools together,
constant indices for the library are different between appli-
cations. The retargeting process is such that, despite the
differences in constant pool indices in the Dalvik bytecode,
the indices in the retargeted code of the library are the same.
The reason why this is true is that Dare uses Jasmin [36]
for bytecode assembly. In order to use a constant in Jas-
min code, the value of the constant has to be textually “de-
scribed”. For example, an integer constant is described by
its value. Also, a method reference is described by the signa-
ture of the method and the name of its declaring class. This
description only depends on the value of the constant and
not on its original index in the .dex constant pool. Thus,
the Jasmin code for a given library is the same after retar-
geting different applications that contain the library. This
in turn results in identical Java bytecode after assembling
the Jasmin code.

4.1.1 Potential Attach Surface
Evading Library Integrity Verification by Duet

(False Negative) : It is fatal for an integrity verification
tool if the tool/technique can be evaded by attackers. In
our problem, this means that a library is detected as un-
modified, even though it was in reality modified. In order
for a library to be detected as unmodified, its retargeted
files have to be strictly identical to the reference retargeted
files. Thus, false negatives can only occur if different Dalvik
code map to the same retargeted files. The only parts of the
.class files that have an influence on runtime behavior (and
are therefore potential targets of attacks) are the fields and
methods. Field declarations are simply composed of a type,
a name, and in some cases an initial value. Thus any mod-
ification would be detected by Duet. Method code is more
complex, with 257 possible kinds of instructions. However,
as described in [37], the mapping between Dalvik and Java
bytecode is unambiguously defined. There are rare cases
where different Dalvik bytecode map to the same Java byte-
code. However, in these cases the different Dalvik bytecode
structures are semantically equivalent. For example, there
are two ways to fill an array with data in Dalvik bytecode.
One is to add data to the array one element at a time. The
second one consists in using a single fill-array-data in-
struction. Both cases are translated to Java bytecode using
the same pattern. That is because they are semantically
equivalent. In addition to this example, we have considered
all other cases where different Dalvik instructions patterns
map to similar Java bytecode patterns and in all cases the
Dalvik semantics are the same. As a result, while it is pos-
sible that our approach may miss some code modifications,
the modified code would not be semantically different. In
particular, malicious modifications cannot go undetected.

4.2 Building the Reference Database
When building the reference database, Duet first down-

loads the original libraries from library providers. Then,
Duet calculates the canonical library digests and canonical
file digests for libraries.

4.2.1 Canonical Library Digest
As shown in Figure 3(a), Duet takes five steps to calcu-

lated the canonical library digest: compilation, retargeting,
library directory information collecting, library encoding,
and digest calculation.

Compilation: Duet uses the Dalvik dx compiler to gen-
erate the .dex file. Different versions of dx generate differ-
ent .class files. When we build the reference database, we
should consider all possibilities. We go through all versions
of Android application SDK and we find that there are four
different versions of dx so far. We also find two of them
generate the same result.

Retargeting: We use Dare [37] to retarget the .dex to
Java .class files. Dare offers a feature which consists in
rewriting unverifiable (i.e., malformed) Dalvik bytecode to
generate verifiable Java bytecode. This feature could poten-
tially lead to application-specific modifications of a library.
Indeed, one of the main causes of unverifiability is that some-
times Dalvik bytecode refers to missing classes [37]. If such
a class is included in one application A but is excluded in ap-
plication B, then Dare would rewrite the code in application
B but not in application A (since A does not have a miss-
ing class). Therefore, we deactivate the rewriting feature in
Dare.

Library Directory Information Collecting: After re-
targeting, the retargeted .class files are organized according
to their package name. For example, .class files from Ad-
Mob [27] are located in directory “/com/google/ads/”. Duet
needs this information in order to separate the .class files of
the library from other parts of applications in the future.

Library Encoding: A single library commonly has hun-
dreds of .class files. During the file encoding, we merge the
content of all retargeted .class files of the library into one
file.

Digest calculation: Once Duet gets the encoded file
from the library encoding step, Duet calculates a crypto-
graphic hash as the canonical library digest of the particular
library.

After the above process, Duet stores the following infor-
mation into the reference database: the library provider,
version, canonical library digest, and library directory infor-
mation.
4.2.2 Canonical File Digest

For each original library, Duet calculates a cryptographic
hash for each retargeted .class file, which is a canonical file
digest. These canonical file digests and the names of .class
files are also stored into the reference database.

4.2.3 Issues
For the reference database, it is critical to store all legit-

imate canonical library digests and legitimate canonical file
digests. Otherwise, Duet will make wrong conclusions for
the integrity verification. It requires Duet not only supports
legitimate behaviors of library providers but also supports
all legitimate settings in the developers’ build processes. In
particular, Duet needs to solve the following issues: (1)
Collect all history versions of original libraries from their
providers; (2) Support all versions of dx compilers; (3) Sup-
port all possible options of dx compilers. We explain how
Duet solve these three issues in Section 5.3.

4.3 Library Integrity Verification in Applica-
tions

As shown in Figure 3(b), the integrity verification in ap-
plications also needs five steps: decompression, retargeting,



Library Provider

Original Library 
(.class files)

Validation Application (.apk)
classes.

dex
resources.

arsc

uncompiled resources

AndroidManifest.xml

retargeting
dare

compilation
dx

Class 1.class

Data

Constant Pool
Class Info

Class N.class

Data

Constant Pool
Class Info

Retargeted Library 
(.class files)

Class A.class

Data

Constant Pool
Class Info

Class A.class

Data

Constant Pool
Class Info

Class A1.class

Data

Constant Pool
Class Info

file
encoding

Library

Canonical Library 
Digest (whole 

package)

hash calculation
SHA-256

Directory Information
Collecting

Canonical File 
Digest (per class)

(a) Calculating the canonical library digest and canonical file digest for original libraries.

classes.dex

Header

Constant Pool

Data
ClassN definition

Class1 definition

decompression
unzip

retargeting
dare

Class 1.class

Data

Constant Pool
Class Info

Class N.class

Data

Constant Pool
Class Info

Android 
Application
(.apk file)

Library 1 (.class files)

Class A.class

Data

Constant Pool
Class Info

Class A.class

Data

Constant Pool
Class Info

Class A1.class

Data

Constant Pool
Class Info

Library n (.class files)

Class A.class

Data

Constant Pool
Class Info

Class A.class

Data

Constant Pool
Class Info

Class An.class

Data

Constant Pool
Class Info

file
encoding

Library 1
Library 1 Digest
(whole package)

Library n Digest
(whole package)

hash calculation
SHA-256

Library n

library
separating

Library 1 File Digest
(per class)

Library n File Digest
(per class)

(b) Calculating library digest and file digest for libraries in Android applications.

Figure 3: Calculation of library digest and file digest.

library separating, library encoding, and digest calculation.
Retargeting, library encoding, and digest calculation are the
same as the steps when building the reference database. The
other two steps, decompression and library separating, are
explained as follows.

Decompression: In the library integrity verification, Duet
gets the classes.dex from the .apk files of Android applica-
tions. The .apk files are in zip format. We use “unzip” to
get the classes.dex. We also use this step to verify that the
application does not be damaged during network transmis-
sions.

Separating library and application logic: After re-
targeting, the retargeted .class files are organized according
to their package names. With the library directory infor-
mation in the reference database, we can easily separate
libraries from other application logic.

5. EVALUATION
We have two main evaluation goals. First, we want to do

library integrity verification against 100,000 Android appli-
cations in the wild to assess the extent to which Duet can
help address the three library-centric security threats in the
real world. Our measurements directly help the potential
victims of the aggressive library threat to clear their names.
The measurements also estimate an upper bound on how
many library usages in the wild could suffer from the mod-
ification threat and the masquerading threat. The second
goal is to validate the decisions made by Duet. In partic-
ular, Duet makes two types of decisions: (1) one library
passes the integrity verification, and (2) it does not pass
the integrity verification. We want to evaluate whether the
decisions are trustworthy. So we will do in-depth analysis
regarding whether Duet is making any incorrect decisions.

Our dataset has 100,000 applications downloaded from
Google Play between February 2012 and September 2013.
For applications that have multiple versions, only the latest

Table 1: Categories of the top 100 detected libraries,
and their source code available situation.

# of # of Source Source Available
Libraries Available Percent (%)

App-Dev 39 34 87.18%
Advertising 34 0 0.00%
Service 10 2 20.00%
Analytics 9 0 0.00%
Game 8 0 0.00%

Total 100 36 36.00%

version is included in the dataset. In Section 5.1, we detect
the top 100 libraries used in these applications, and analyze
the library usage. Then, we evaluate Duet by both in-lab
testing and measurements on this dataset.

5.1 Libraries in Android Applications
For all 100,000 Android applications, we use Dare to do

retargeting to get all .class files. After that, we scan Java
namespaces, and count how many times each particular names-
pace is used. With namespace list sorted by frequency, we
map namespaces to libraries with a manual online search.
This process is repeated until we collect the top 100 Android
application libraries. Considering that a popular library is
usually reused in various applications, we get a list of most
popular libraries in our dataset by this method. Figure 4(a)
shows the top 20 detected libraries.

During our manual library mapping, we also identify the
category of each library and its source code availability in-
formation. As shown in Table 1, there are 39 utility libraries
meant to facilitate the application development process. For
instance, the Android support library from Google can sim-
plify the process of targeting different hardware. Many of
these libraries are based on open source projects or are open
source projects themselves. 87.18% of libraries in this cate-
gory have source code available.



 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

AdM
ob

Android_Support_Libraries

AndroidAnnotations

Facebook_Android_SD
K

bugsense

G
oogle_Play_Billing_Library

flurry

gson
Tw

itter4J

actionbarsherlock

G
oogle_Analytics

m
illennialm

edia

phonegap

apperhand

InM
obi

Leadbolt

zxing

AdM
ob_(old_version)

acra
codehars

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4
#
 o

f 
A

p
p
lic

a
ti
o
n
s

P
e
rc

e
n
t

(a) Popularity of the Top 20 Libraries in Our Dataset.

 0

 5000

 10000

 15000

 20000

 25000

 1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 21 22

#
 o

f 
A

p
p

lic
a

tio
n

s

# of Libraries in One Application���

23529

19494

12556

8467

5535

3501
23362805

10759871046481 259 520 193 111 65 62 15 4 2 1

(b) Number of Libraries Contained by Each Application.

Figure 4: Library usage information.

The next popular popular category is advertising. We
detected 34 advertising libraries. Other 10 libraries are pro-
viding important services to the Android applications. We
name these libraries as the service libraries. One example
is Google Play Billing library, which provides the service of
in-application purchase. Another library category is the an-
alytics library. An analytics library helps developers know
how and when users use their applications. 9 libraries in
the top 100 libraries fell into this category. The last cate-
gory of libraries is the game library. There are 8 libraries
in this category. The source code of most of these libraries
is not available, most likely because they aim at monetizing
applications.

With the top 100 library list, we then check how widely
libraries are used in Android applications. As shown in Fig-
ure 4(b), one application that uses 22 libraries as the ex-
treme case. In our dataset, 83,044 (83.04%) applications
use at least one library in the top 100 list.

As shown in Table 2, we detect 276,317 library usage cases
in total. 149,291 occurrences (54.04%) happen in the App-
Dev category. These usages happened in 66,035 (66.04%)
different applications. The remaining 127,026 (45.97%) us-
ages happen in the following categories: advertising, service,
analytics, and game. Correspondingly, these usages happen
in 60,009 (60.01%) different applications.

Generally, the above results indicate that libraries are
widely used in the Android applications. For those libraries
having business behind, the modification threat could cause

Table 2: Usage information of the top 100 detected
libraries.

# of Category Usage Percent in Total
Usage (%)

App-Dev 149,291 54.03%
Advertising 84,617 30.62%
Service 16,762 6.07%
Analytics 17,458 6.32%
Game 8,189 2.96%

Total 276,317 100.00%

damages. 60.01% of applications in our dataset, contain
these libraries. For library providers, the masquerading threat
could hurt library providers’ reputation. For benign appli-
cation developers, the aggressive library threat could lead
to being excluded from application stores. In other words,
a tool that can address the three library-centric security
threats is very important for building a healthy smartphone
application ecosystem.

5.2 In-lab testing of the correctness of Duet
To ensure that we know 100% of the ground truth, instead

of using a real-world library, we create a library by ourselves
and denote it as the “original library”. Then, we modify it
manually with two different methods: (1) we modify the java
source code of the library, get the modified .class files using
a Java compiler, and compile these .class files to an Android
application; (2) we first build an application that uses the
“original library”; then, we use reverse engineering tools [1]
to repackage this application and modify the library dur-
ing the process. In the modifications, we make changes on
different targets including APIs, fields, and .class files. Fi-
nally, we use Duet to perform integrity verification between
the original library and the modified ones. As shown in the
following table, Duet detects all these manual modifications.

Attack Methods Class Modification Repackaging

API Removal Not Pass Not Pass
API Addition Not Pass Not Pass
API Modification Not Pass Not Pass
Field Removal Not Pass Not Pass
Field Addition Not Pass Not Pass
Field Modification Not Pass Not Pass
.class File Removal Not Pass Not Pass
.class File Addition Not Pass Not Pass

5.3 In-the-wild Library Integrity Verification
Results

After in-lab testing, we then perform in-the-wild library
integrity verification. We need to build the reference database
with the real-world libraries before integrity verification.

Table 3: Information of the Reference Database.

Rank
# of # of Canonical # of Canonical

Version Library Digest File Digest

AdMob 1 16 256 25,104

Android
2 41 656 130,080

Support

AppBrain 40 89 1,424 56,316

AdFonic 57 9 144 5,280

Others 63 252 35,624

Total 218 2,732 252,404



Table 4: In-the-wild Library Integrity Verification Results. (All Known Versions)

Rank
# of

Library Digest File Digest
Compilation with # of # of

Detection Customized Options Passings not Passings

AdMob 1 35,726 28,264(79.11%) 40(0.11%) 10(0.03%) 28,314(79.25%) 7,412(20.75%)
Android Support 2 32,002 23,243(72.63%) 37(0.12%) 24(0.07%) 23,304(72.82%) 8,698(27.18%)
AppBrain 40 1,522 1,050(68.99%) 235(15.44%) 0(0.00%) 1,285(84.43%) 237(15.57%)
AdFonic 57 1,025 876(85.46%) 0(0.00%) 0(0.00%) 876(85.46%) 149(14.54%)

Average (76.55%) (3.92%) 0(0.03%) (80.50%) (19.50%)

Building the Reference Database: As we explained
in Section 4.2.3, it is critical but non-trivial to build the
reference database. The first requirement is to collect all
history versions of third-party libraries. It is not difficult
for application stores to request all versions from library
providers by requesting them. But, it is difficult for us be-
cause we cannot afford the communication costs with a large
number of library providers. Further, our demand could be
ignored for various reasons. For instance, some old versions
have vulnerabilities such that the provider does not want
to provide them. However, we still manage to collect all
known versions for 4 libraries. For example, we download
all known versions of AdMob based on its release note [27].
Besides the above 4 libraries, we collect some versions for
another 11 libraries.

For these 4 libraries with all known versions, the total
number of usage cases are 70,275. These libraries cover both
the most popular closed source library and the most pop-
ular open source library, as well as contain libraries from
both well-known library providers and relatively small li-
brary providers. Analysis on them provides empirical insight
into library integrity situation in the wild.

For the dx compiler, we go through all versions of the An-
droid application SDK and find that there are four different
versions of dx so far. We also find two of them generate the
same result. In addition, dx compiler has two working op-
timization options, Duet supports all combinations of these
options.

Overall, the reference database takes 6.28GB. As shown
in Table 3, the reference database contains 218 original li-
braries, 2,732 canonical library digests, and 252,404 file di-
gests. The rank in the table is the rank of the library in the
top 100 list.

Library integrity verification results: Now, we are
ready to use real-world libraries and applications to evaluate
the effectiveness of Duet. Table 4 shows the integrity verifi-
cation pass ratio of 4 libraries with all known versions. The
highest passing rate is achieved with AdFonic with 85.46%;
the lowest passing rate is 72.82%. These numbers indicate
that libraries are not modified after release in 80.50% of
cases on average in the wild.

The remaining 19.50% of cases do not pass the integrity
verifications. These not passing, however, do not always
mean malicious library modification or masquerading library.
In Section 6, we will look into these not passing cases and
do in-depth analysis.

We perform the integrity verification on 11 libraries with
some versions in order to check whether Duet can be used
for other Android libraries. Table 5 shows the integrity ver-
ification pass ratio of these libraries. The highest passing
rate is achieved with OldAdMob1 with 69.32%; the lowest

1OldAdMob was the library released by AdMob when it was
an independent company.

Table 5: In-the-wild Library Integrity Verification
Results. (Some Versions)

Rank
# of Library File

Detection Digest Digest

BugSense 5 8,156 221(2.71%) 0(0.00%)
Flurry 7 6,741 2,107(31.26%) 0(0.00%)
Millennial
Media 12 4,296 1,864(43.39%) 0(0.00%)
InMobi 15 3,344 201(6.01%) 401(11.99%)
OldAdMob 18 3,126 2,167(69.32%) 0(0.00%)
AdWhirl 24 2,458 1,183(48.13%) 2(0.08%)
Mobclix 25 2,403 647(26.92%) 0(0.00%)
RevMob 31 1,864 225(12.07%) 1(0.05%)
MobFox 37 1,679 188(11.20%) 0(0.00%)
ZestAdZ 86 521 356(68.33%) 0(0.00%)
Cauly 88 504 66(13.10%) 0(0.00%)

passing rate is 2.71%. Every library has some samples that
can pass. This indicates that Duet is a tool that can handle
integrity verification of any Android library.

In both Table 4 and Table 5, some samples pass the in-
tegrity verification by using file digest. This fact indicates
that Duet does tolerate two real-world issues aforementioned
in Section 3.3 by introducing the file digest as the supple-
ment of the library digest.

In Table 4, 80.47% of samples pass the integrity verifica-
tion by matching the canonical digests generated with the
default dx options. At the same time, 0.03% of samples pass
the integrity verification with the canonical digests gener-
ated with customised dx options. This indicates that (1)
Duet does tolerate different dx compiler options; (2) Very
few application developers customise the dx compiler op-
tions.

5.4 Implications of Passing Rates
As we mentioned in Section 1, if we can fully trust the

passing conclusions made by Duet, the three library-centric
threats can be effectively addressed. Third-party libraries
that become malicious after modifications and masquerad-
ing libraries cannot pass library integrity verification. This
guarantees that library provider is not the attacker. The
measurements estimate 19.50% library usages in the wild
have been modified in the development process. They are
the upper bound of how many library usages in the wild
could suffer from these two threats. However, if the ma-
licious behaviors come from aforementioned legitimate and
problematic third-party libraries, benign application devel-
opers should be protected. If these problematic libraries pass
library integrity verification, it proves that the malicious be-
haviors in these libraries are from the library providers, in-
stead of application developers. Our measurements directly
help 80.50% of library usages which are the potential victims
of the aggressive library threat to clear developers’ names.

Whether we can fully trust passing conclusions depends on
whether Duet generate any false negatives and/or false posi-
tives. By false negative we mean that a library is detected as



unmodified, even though it was in reality modified. In Sec-
tion 4.1.1, we have discussed whether false negative could
exist. By false positive, we mean that an unmodified library
fails to pass verification. Because the false positive issue
is critical, we will use dedicated one section to do in-depth
analysis. In particular, we will manually check whether false
positive exists in Section 6.

5.5 Performance
Since Duet is designed to be used in the real world,

the performance is an important factor. Retargeting takes
5,259ms on average as the majority of the time of the library
integrity verification. All other processing for the verifica-
tion of one library takes 27.9ms on average that is much less
than the time for retargeting. For an application, the retar-
geting happens just once while the other processing repeats
for each detected library. In our dataset, each application
has three libraries on average. Therefore, it takes less than
7 seconds on average for an application to do the library
integrity verifications for all libraries that this application
uses.

6. IN-DEPTH ANALYSIS OF APPLICATIONS
THAT DO NOT PASS VERIFICATION

In our Dataset, 19.50% of libraries do not pass the in-
tegrity verification. We collect names of .class files in these
libraries and perform manual analysis on a randomly se-
lected set of applications in order to find the reasons of not
passing integrity verification. In some situations, we also
compare the decompiled code to check the not passing rea-
sons. As shown in Table 6, we find the major reasons of not
passing are code insertion, obfuscation, optimization, and
missing original libraries.

Code Insertion: We find some libraries have code that
is not from the library provider. We find these inserted .class
files by checking if there are any .class files not a member
of the set of .class files in the reference database.

We find there are several different ways to insert code
into libraries: (1) Developers add their own code such as
MyViewActivity.class into the namespace of libraries. (2)
Other libraries lodge into the namespace of original libraries.
For instance, Waston [8] lodges in the Android Support li-
brary. (3) The library provider may allow other libraries
to use its namespace. For instance, AdMob allows other
advertising libraries that use its mediation service to use
“/com/google/ads/mediation/”.

For developers, it is not a good idea to use the namespace
that is used by a library provider. This allows the inserted
code to access the“package”methods and fields, which might
cause problems. For instance, a “package” field could have
the same name as another filed in another package. Inserted
code by developers could use the wrong filed because of care-
lessness. For the library provider, allowing others’ libraries
to use its namespace may bring conveniences in its manage-
ment. Duet can be extended to support this, as long as these
admissive libraries are also collected.

For the four libraries, we manually checked every .class
file. The results are as follows. 63(0.18%) applications
among 35,726 applications using the AdMob library have
code inserted. For AppBrain and AdFonic libraries, we ob-
served similar percentages, 0.26% and 0.29%, respectively
(see Table 6). However, we observed a significant high per-
centage of the Android Support library. 5605 applications
out of 32,002 applications have code insertion. This is be-

cause Android Support library is the only open source li-
brary in these four libraries. Therefore, developers could
modify its source code and add their own code as well.

Having code insertion does not really mean that the code
inserted has malicious intent. A lot of code insertion is ac-
tually done by benign developers. Separating good code
inserted from malicious one is out of the scope of this work.

Obfuscation: When we analyze names of the .class files
to detect the code insertion, we notice that some libraries
have been obfuscated by application developers from the fact
that some .class names have been modified. For instance,
android/support/a/a/A.class is never used in the original
libraries, but is detected in the dataset. These obfuscated
.class file names sometimes even contains special characters
from Chinese or Japanese. We manually build a list of .class
names for these obfuscated cases. As show in Table 6, on
average 12.73% of libraries are detected to have been obfus-
cated by application developers.

Our analysis on libraries indicates one interesting thing:
many libraries have been obfuscated by the library provider
before release. In these cases, another obfuscation by the ap-
plication developers does not benefit developers that much.
We suggest the application developer should not perform
obfuscation to libraries that have already been obfuscated.
ProGuard [6] does have options to achieve this function.

Optimization: Optimization on libraries by developers
is another reason for not passing integrity verification. For
example, we use Soot [7] to decompile the .class files of one
AdMob library to get source code and compare with decom-
piled source code from the original library. In this case, op-
timization is found as one reason for not passing verification.
For instance, in com/google/ads/AdActivity.class, we figure
out that the code inlining optimization has changed .class
files. As another example, we find annotations in samples
of Android Support library have been removed. There are
several ways developers can remove annotations in a library.
For instance, developers can use ProGuard to perform the
removal. As shown in Table 6, we find 0.97% of libraries do
not pass the integrity verification because of optimizations.

Missing Original Libraries: Another reason of not
passing integrity verification is missing the original libraries.
Although we manage to collect all known versions for 4 li-
braries, it is still possible that we missed some very old
versions. For example, we download all known versions
of AdMob based on its official release note [27]. The re-
lease note contains version information after March 15, 2011.
According to our knowledge, Google also released advertis-
ing libraries that were called GoogleAdView.jar before that
date. In the reference database, we only have two versions
of GoogleAdView.jar.

The GoogleAdView.jar contains GoogleAdView.class that
is not used in subsequent AdMob. With this particular .class
name, we detect 459 samples of GoogleAdView.jar. However,
451 of these 459 samples do not pass the integrity verification
(see Table 6). The passing ratio for GoogleAdView.jar is
1.74%(8 of 459) that is much less than 80.50%. Therefore,
we must miss some versions of GoogleAdView.jar when we
build the reference database.

This fact indicates that a reference database with all ver-
sions of libraries is critical for Duet. Library providers can
provide old versions to the application store directly. They
have an incentive to do so, as it protects their reputation
in the event of a library-centric attack. Library providers



Table 6: In-depth Analysis of In-the-wild Verification Not Passing Samples.

Rank # of not Passing Code Insertion Obfuscation Optimization
Missing

Remain
Original Library

AdMob 1 7,412(20.75%) 63(0.18%) 5,772(16.16%) 509(1.42%) 451(1.26%) 617(1.73%)
Android Support 2 8,698(27.18%) 5,607(17.52%) 2,150(6.72%) 356(1.12%) 0(0.00%) 585(1.83%)
AppBrain 40 237(15.57%) 4(0.26%) 213(13.99%) 16(1.05%) 0(0.00%) 4(0.26%)
AdFonic 57 149(14.54%) 2(0.20%) 144(14.05%) 3(0.30%) 0(0.00%) 0(0.00%)

Average (19.50%) (4.54%) (12.73%) 0(0.97%) (0.32%) (0.96%)

are willing to provide these information because it will pro-
tect their reputation in case of the library-centric attacks.
In this process, library providers do not share extra infor-
mation with application stores because libraries are publicly
available.

7. RELATED WORK
Security and privacy in Android have become popular top-

ics in the research community.
Smartphone platform security: Kirin [20] is addressing
permission combinations of Android applications. Whenever
third-party applications are installed, the security require-
ments will be checked. The limitation of this approach is
that applications might collaborate to bypass the protection
of Kirin. As the extension of Kirin, Saint [38] does runtime
inspection on the permission state.

For application security, dynamic taint analysis is used in
both Android OS [18] and iOS [17]. The results from both
operating systems are similar. End users’ private data might
be leaked to servers on the Internet.

Static analysis is widely used in application security on
Android OS. Enck et al. [19] and Chan et al. [12] obtain
the application source codes by decompiler and use existing
tools to do analysis. Other works [13, 19, 21, 23, 28, 29,
30, 45, 47] do the analysis on either the class bytecodes or
intermediate codes. These works have detected malware and
give the direction of future research to improve the security
on the Android platform.

All these works treat one Android application as an unit.
Libraries and application logic are treated as the same.
Those techniques that use static analysis and dynamic anal-
ysis can detect malicious behaviors, even if the malicious
behaviors happen in the library code. However, none of
these techniques can check the integrity of library code in
Android applications. Hence, they can neither help the li-
brary providers clear their names for the modification threat
and the masquerading threat, nor help the application de-
velopers clear their names for the aggressive library threat.
Android Advertising Library: Advertising libraries
have been the focus of recent works. Grace et al. [28] and
Steven et al. [42] have analyzed advertising libraries in the
real world. They found over one hundred types of different
advertising libraries using static analysis. They found that
advertising networks sometimes collect information from end
users, e.g., collecting contacts in the phone. These works fo-
cus on the analysis of the behavior of advertising libraries.

Researchers proposed solutions to use different applica-
tions for application logic and for the advertising library [41,
34]. In this approach, the advertising library and the remain-
ing application logic have their own protection domain. Ad-
Droid [39] uses another approach to separate advertisements
from application by supporting advertisements in a system
service. Both of these solutions solve the problem that the
application logic and the library share the same protection.
However, for the modification threat and the masquerading

threat, discussed in this paper, attacks still work when the
library is in another protection domain. For the aggressive
library threat, the problem is still the same while the victims
could be the application developers or the operating system
provider based on which solution is chosen.
Library Detection: Library detection has been well stud-
ied. IDA Pro’s Fast Library Identification and Recognition
Technology (FLIRT) [32] is a popular library identification
technique using byte pattern matching algorithms. In an-
other work [31], Griffin et al. detect libraries based on the
heuristic that a library function cannot statically call any
user-written function. Both of these techniques can be ex-
tended to detect third-party libraries for Android applica-
tions. However, none of them can verify the library integrity.
Repackaging: Researchers have noticed repackaged An-
droid applications. Zhou et al. [46] found 86% of mal-
ware is repackaged. Researchers analyze either intermedi-
ate codes (smali) or java classes (from reverse engineering)
of the applications to generate CFGs and program depen-
dence graphs (PDGs) [45, 15, 16]. The CFG and PDG are
then used to detect the repackaged applications. These solu-
tions are targeting to application plagiarism. They require
to remove library code for making decisions on potential
repackaging. Therefore, these techniques cannot be used to
address the three library-centric security threats.
Code Clones: Besides repackaging detection for Android
applications, both the detection of similar software applica-
tions and the detection of code clones have been well studied
[33] and [35]. These techniques detect similarity between ap-
plications by comparing strings, tokens, trees, or semantics.
None of them can be used to verify the software integrity.

8. CONCLUSION
There are three security library-centric threats in the world

of Android. Since there is no existing technique that can ef-
fectively fully address these threats, we propose a novel tech-
nique for library integrity verification in application stores.
In the evaluation, we use a dataset with 100,000 Android ap-
plications downloaded in the wild, and perform the library
integrity verification on 15 libraries. Measurement results
indicate that Duet is a useful technique to mitigate three
security library-centric threats. Measurement results also
provide the first empirical insight into the library integrity
situation in the wild.

9. ACKNOWLEDGEMENTS
We thank Matthew Dering for providing our application

samples. We also thank Stephen McLaughlin, Hayawardh
Vijayakumar and our shepherd David Barrera for editorial
comments during the writing of this paper. This work was
supported by ARO W911NF-09-1-0525 (MURI), NSF CCF-
1320605, and W911NF-13-1-0421 (MURI). This material is
also based upon work supported by the National Science
Foundation Grants No. CNS-1228700, CNS-0905447, CNS-
1064944 and CNS-0643907. Any opinions, findings, and con-



clusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the National Science Foundation.

10. REFERENCES
[1] android-apktool.

http://code.google.com/p/android-apktool/.

[2] Android open source project. http://source.android.com.

[3] AntiVirus Security. https://play.google.com/store/apps/
details?id=com.antivirus.

[4] Bionic. https://github.com/android/platform\_bionic.

[5] Kaspersky Internet Security for Android.
http://www.kaspersky.com/android-security.

[6] Proguard. Available at: http://proguard.sourceforge.net.

[7] Soot: a java optimization framework. Available at:
http://www.sable.mcgill.ca/soot/.

[8] Watson library.
http://grepcode.com/file/repo1.maven.org/maven2/com.
octo.android.robospice/robospice-motivations/1.2.0/
android/support/v4/app/Watson.java.

[9] Zebra crossing (zxing). https://github.com/zxing/zxing.

[10] Android Open Source Project. .dex - dalvik executable
format, Nov 2007. http://source.android.com/devices/
tech/dalvik/dex-format.html.

[11] AntiLVL. android cracking: Antilvl, 2013. Available at: http:
//androidcracking.blogspot.com/p/antilvl_01.html.

[12] Chan, P., Hui, L., and Yiu, S. Droidchecker: analyzing android
applications for capability leak. In Proceedings of the fifth
ACM conference on Security and Privacy in Wireless and
Mobile Networks (2012), ACM, pp. 125–136.

[13] Chin, E., Felt, A., Greenwood, K., and Wagner, D. Analyzing
inter-application communication in android. In Proceedings of
the 9th international conference on Mobile systems,
applications, and services (2011), ACM.

[14] Cravens, A. A demographic and business model analysis of
today’s app developer. Available at:
http://appdevelopersalliance.org/.

[15] Crussell, J., Gibler, C., and Chen, H. Attack of the clones:
Detecting cloned applications on android markets. Computer
Security–ESORICS 2012 (2012), 37–54.

[16] Crussell, J., Gibler, C., and Chen, H. Andarwin: Scalable
detection of semantically similar android applications. In
Computer Security–ESORICS 2013. Springer, 2013.

[17] Egele, M., Kruegel, C., Kirda, E., and Vigna, G. Pios:
Detecting privacy leaks in ios applications. In Proceedings of
the Network and Distributed System Security Symposium
(2011).

[18] Enck, W., Gilbert, P., Chun, B., Cox, L., Jung, J., McDaniel,
P., and Sheth, A. Taintdroid: an information-flow tracking
system for realtime privacy monitoring on smartphones. In
Proceedings of the 9th USENIX conference on Operating
systems design and implementation (2010), pp. 1–6.

[19] Enck, W., Octeau, D., McDaniel, P., and Chaudhuri, S. A
study of android application security. In Proceedings of the
20th USENIX Security Symposium (2011), vol. 2011.

[20] Enck, W., Ongtang, M., and McDaniel, P. On lightweight
mobile phone application certification. In Proceedings of the
16th ACM conference on Computer and communications
security (2009), ACM.

[21] Fuchs, A., Chaudhuri, A., and Foster, J. Scandroid:
Automated security certification of android applications.
Manuscript, Univ. of Maryland (2009).

[22] Gartner. Android and samsung dominate the phone market in
q1. Available at: http://www.engadget.com/2013/05/14/
gartner-android-samsung-q1-2013/.

[23] Gibler, C., Crussell, J., Erickson, J., and Chen, H.
Androidleaks: automatically detecting potential privacy leaks
in android applications on a large scale. Trust and Trustworthy
Computing (2012), 291–307.

[24] Google. Google Play In-app Billing. https://developer.
android.com/google/play/billing/index.html?hl=en-Us.

[25] Google Inc. Andriod Support Library. http://developer.
android.com/tools/support-library/index.html.

[26] Google Inc. Lvl: License verification library.
http://developer.android.com/google/play/licensing/
index.html.

[27] Google Inc. Release Notes - Google Mobile Ads SDK.
https://developers.google.com/mobile-ads-sdk/docs/
rel-notes.

[28] Grace, M., Zhou, W., Jiang, X., and Sadeghi, A. Unsafe
exposure analysis of mobile in-app advertisements. In
Proceedings of the fifth ACM conference on Security and
Privacy in Wireless and Mobile Networks (2012), ACM.

[29] Grace, M., Zhou, Y., Wang, Z., and Jiang, X. Systematic
detection of capability leaks in stock android smartphones. In
Proceedings of the 19th Annual Symposium on Network and
Distributed System Security (2012).

[30] Grace, M., Zhou, Y., Zhang, Q., Zou, S., and Jiang, X.
Riskranker: scalable and accurate zero-day android malware
detection. In Proceedings of the 10th international conference
on Mobile systems, applications, and services (2012), ACM.

[31] Griffin, K., Schneider, S., Hu, X., and Chiueh, T.-C.
Automatic generation of string signatures for malware
detection. In Recent Advances in Intrusion Detection (RAID)
(2009), Springer.

[32] Guilfanov, I. Fast Library Identification and Recognition
Technology (1997). https:
//www.hex-rays.com/products/ida/tech/flirt.shtml.

[33] Jiang, L., Misherghi, G., Su, Z., and Glondu, S. Deckard:
Scalable and accurate tree-based detection of code clones. In
Proceedings of the 29th international conference on Software
Engineering (2007), IEEE Computer Society.

[34] Leontiadis, I., Efstratiou, C., Picone, M., and Mascolo, C.
Don’t kill my ads!: balancing privacy in an ad-supported
mobile application market. In Proceedings of the Twelfth
Workshop on Mobile Computing Systems & Applications
(2012), ACM, p. 2.

[35] McMillan, C., Grechanik, M., and Poshyvanyk, D. Detecting
similar software applications. In Software Engineering (ICSE),
2012 34th International Conference on (2012), IEEE.

[36] Meyer, J., Reynaud, D., and Kharon, I. Jasmin home page.
http://jasmin.sourceforge.net/, 2004.

[37] Octeau, D., Jha, S., and McDaniel, P. Retargeting Android
Applications to Java Bytecode. In Proceedings of the 20th
International Symposium on the Foundations of Software
Engineering (November 2012).

[38] Ongtang, M., McLaughlin, S., Enck, W., and McDaniel, P.
Semantically Rich Application-Centric Security in Android. In
2009 Annual Computer Security Applications Conference
(2009), IEEE.

[39] Pearce, P., Felt, A., Nunez, G., and Wagner, D. Addroid:
Privilege separation for applications and advertisers in android.
In Proceedings of AsiaCCS (2012).

[40] Poeplau, S., Fratantonio, Y., Bianchi, A., Kruegel, C., and
Vigna, G. Execute this! analyzing unsafe and malicious
dynamic code loading in android applications. In Proc. of the
19th Annual Network and Distributed System Security
Symposium (NDSS) (2014).

[41] Shekhar, S., Dietz, M., and Wallach, D. Adsplit: separating
smartphone advertising from applications. In Proceedings of
the 21st USENIX conference on Security symposium (2012),
USENIX Association.

[42] Stevens, R., Gibler, C., Crussell, J., Erickson, J., and Chen,
H. Investigating user privacy in android ad libraries. In
Proceedings of IEEE Mobile Security Technologies (MoST)
(2012).

[43] Zhang, Y., Xue, H., Wei, T., and Song, D. Ad vulna: A
vulnaggressive (vulnerable & aggressive) adware threatening
millions. FireEye Blog,
http://www.fireeye.com/blog/technical/2013/10/ad-vulna-a-
vulnaggressive-vulnerable-aggressive-adware-threatening-
millions.html,
2013.

[44] Zhang, Y., Xue, H., Wei, T., and Song, D. Monitoring
vulnaggressive apps on google play’. FireEye Blog,
http://www.fireeye.com/blog/technical/2013/11/
monitoring-vulnaggressive-apps-on-google-play.html,
November 2013.

[45] Zhou, W., Zhou, Y., Jiang, X., and Ning, P. Detecting
repackaged smartphone applications in third-party android
marketplaces. In Proceedings of the second ACM conference
on Data and Application Security and Privacy (2012), ACM.

[46] Zhou, Y., and Jiang, X. Dissecting android malware:
Characterization and evolution. In Security and Privacy (SP),
2012 IEEE Symposium on (2012), IEEE, pp. 95–109.

[47] Zhou, Y., Wang, Z., Zhou, W., and Jiang, X. Hey, you, get off of
my market: Detecting malicious apps in official and alternative
android markets. In Proc. of the 19th Annual Network and
Distributed System Security Symposium (NDSS) (2012).


