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Abstract—Many program analyses require statically inferring
the possible values of composite types. However, current ap-
proaches either do not account for correlations between object
fields or do so in an ad hoc manner. In this paper, we introduce
the problem of composite constant propagation. We develop the
first generic solver that infers all possible values of complex
objects in an interprocedural, flow and context-sensitive man-
ner, taking field correlations into account. Composite constant
propagation problems are specified using COAL, a declarative
language. We apply our COAL solver to the problem of inferring
Android Inter-Component Communication (ICC) values, which
is required to understand how the components of Android
applications interact. Using COAL, we model ICC objects in
Android more thoroughly than the state-of-the-art. We compute
ICC values for 460 applications from the Play store. The ICC
values we infer are substantially more precise than previous work.
The analysis is efficient, taking slightly over two minutes per
application on average. While this work can be used as the basis
for many whole-program analyses of Android applications, the
COAL solver can also be used to infer the values of composite
objects in many other contexts.

I. INTRODUCTION

Program analyses sometimes need to statically infer the
possible values of object fields. Such a program analysis that
has recently received interest [11], [15], [34] is the inference
of messages communicated between Android applications. The
components of Android applications can interact with one an-
other using platform-specific constructs. This Inter-Component
Communication (ICC) facilitates the reuse of functionality,
both within and between applications. For example, an applica-
tion may need to render a map centered on specific geographic
coordinates. In Android, this application simply needs to send
an ICC message, which will be relayed to an appropriate target
by the operating system. The target will then render the map
based on passed values.

This development model potentially presents concerns.
First, exposed application components may be activated in
unexpected ways, leading, for example, to privilege escalation
attacks [14], [25]. Second, ICC messages can be intercepted
by malicious recipients, with consequences ranging from data
leaks [8] to piracy [29]. Finally, since information may flow
between components, secure information flow analysis must
account for inter-component flows. Without ICC analysis, in
order to remain conservative, static taint analyses in Android
have to assume that any data coming from another component
is tainted [1]. With ICC analysis, such a taint analysis can
precisely determine if inter-component links carry tainted data.
Thus, ICC analysis has proven very valuable in many contexts

such as information flow analysis [22], [24], [38], [41], patch
generation for privilege escalation vulnerabilities [42] and
detection of stealthy behavior [18].

In order to infer facts about interactions between compo-
nents, we need to find all possible values of the fields of
ICC objects at program points where message passing occurs.
Unfortunately, existing studies of application interfaces are
limited. The Epicc tool [34] tries to determine the specifi-
cations of ICC interfaces. Unfortunately, it only addresses
Intent messages and a small subset of URI messages for which
all fields are constant values. Adding complete support for
URIs using the same approach as for Intents would result
in a significant increase in the complexity of the formulation
and implementation of the data flow functions. While this is
possible in theory, it is not feasible in practice. Apposcopy [15]
also infers Intent values but does not compute all fields of an
Intent. In particular, similarly to Epicc URI data is not inferred.

In this paper, we define the problem of Multi-Valued
Composite (MVC) constant propagation. Unlike most constant
propagation analyses, we attempt to find all possible values
of objects of interest at important program points, making
our analysis multi-valued. Our analysis targets composite
constants, i.e., we determine the values of complex objects
that may have multiple fields, taking the correlations between
fields into account. Problems are specified using the COAL
declarative language. We design a COAL solver, which takes
COAL specifications and programs as input and outputs com-
posite constant values at program points of interest. In order
to automatically generate data flow functions, it utilizes the
concept of field transformers, which express how fields are
changed by program statements.

While MVC constant propagation was motivated by An-
droid ICC analysis, this work applies to a wide variety of
static program analyses where the range of values of objects
needs to be determined. It is valuable in various areas such as
software security, maintenance and modeling. It can apply to
many object oriented programming languages.

As an application of our composite constant propagation
solver, we implemented and evaluated IC3, a new tool for
Android ICC analysis. In the COAL language, we modeled
all ICC messages with about 750 lines of COAL specification.
Since Android ICC messages heavily rely on strings of charac-
ters, we devised and implemented a string analysis that is both
efficient and more precise than the one in Epicc. We computed
ICC values in 460 applications from the official Play store. We



1 void map(float latitude , float longitude) {
2 Intent intent = new Intent();
3 intent.setAction("VIEW");
4 Uri geoUri = Uri.parse("geo:" + latitude + ","

+ longitude);
5 intent.setData(geoUri);
6 startActivity(intent); }

(a) Intent targeted at components that can render a map.
1 <activity android:name="MapRenderingActivity">
2 <intent-filter>
3 <action android:name="VIEW"/>
4 <data android:scheme="geo"/>
5 <category android:name="DEFAULT"/>
6 </intent-filter>
7 </activity >

(b) Example Intent Filter declaration to receive the Intent in (a).
1 <activity android:name="DialerActivity">
2 <intent-filter>
3 <action android:name="VIEW"/>
4 <action android:name="DIAL"/>
5 <data android:scheme="tel"/>
6 <category android:name="DEFAULT"/>
7 </intent-filter>
8 </activity >

(c) Example Intent Filter declaration to dial phone numbers.
Fig. 1. Example Intent and Intent Filter used for rendering a map and for
displaying a dialer. The real string values have been abbreviated for clarity.

inferred precise ICC values in 85% of cases. Epicc, on the
other hand, could only infer 66% precisely. The remaining
15% of values could not be determined because of constructs
not yet handled by our string analysis and other pathological
cases. Computing ICC values is efficient, taking on average
slightly over two minutes per application. The extra precision
in inferring ICC values directly translated to a significant
increase in precision when matching messages with potential
receivers. Since the matching process is an overapproxima-
tion of actual runtime communication, having fewer links is
desirable. In our experiments with 460 applications, such a
matching yielded 120,817 links with ICC values computed
by Epicc, whereas values computed with IC3 produced only
26,872 potential links. We make the following contributions:
• We introduce the MVC constant propagation problem.
• We define COAL, a declarative language to specify MVC

constant propagation problems and query their solution.
• We formally define an approach to solve MVC con-

stant propagation problems in an interprocedural, flow and
context-sensitive manner. We implement a COAL solver
based on this formalism and open source it at [32].

• We build IC3, an ICC analysis tool that relies on the COAL
solver. As a part of IC3, we develop a string analysis that
is finely tuned for the most typical cases found in Android
applications. We make its source code available at [33].

II. A MOTIVATING EXAMPLE: ANDROID ICC
Android applications are composed of four different types

of components. Activities represent the user interface. Services
are used for background processing. Content Providers allow
for sharing of structured data between components. Broadcast
Receivers receive messages sent to the entire system.

Components can communicate with one another using two
kinds of objects. Uniform Resource Identifiers (URIs) are used
to address data in Content Providers. Intent object are used
in all other cases. The target component of an Intent can
be specified by explicitly naming it, or it can be determined
automatically by the operating system based on the fields
of the Intent. An Intent resolution procedure maps a given

Intent to possible targets. Several fields of an implicit Intent
are used to match it with potential targets. The action field
represents the operation that the receiving component should
perform. The categories field adds information about the
component that the system can use. For instance, the system
places components with the LAUNCHER category in the main
application launcher. The data field includes data that the
receiving component should act on. It has the form of a URI.

Components can subscribe to receive implicit Intents by
specifying Intent Filters, which describe the actions, categories
and data of the Intents that should be addressed to them. Most
Intent Filters are specified in the manifest file that is included
with every application.

Figure 1 shows a representative example of Android ICC.
In this figure and in the remainder of this paper, we abbreviate
string values for ease of exposition. Figure 1(a) shows a
method that sends an Intent in order to render a map centered
at given coordinates. An Intent intent is created. Its action
is set to VIEW, which is a generic action used to display
many kinds of data. The data of the Intent is defined to be
a URI with the geo scheme followed by coordinates. When
the startActivity() framework method is called, the operating
system (OS) resolves potential target components, prompting
the user to choose a recipient if several components match.

Figure 1(b) is a component declaration as it can be found in
an application manifest. The activity element (Line 1) de-
clares that the application contains an Activity component with
name MapRenderingActivity that includes a single Intent
Filter. The action line specifies that the action field of Intents
received by the component should have value VIEW. The data
declaration at Line 4 specifies that any received Intent should
carry data in the form of a URI with a geo scheme. Finally,
the category line declares that received Intents can carry
the DEFAULT category. This category is added by the OS to
implicit Intents targeting Activities, such as the one on Line
6 of Figure 1(a). Therefore, MapRenderingActivity could
receive the Intent created in Figure 1(a).

In order to statically know how application components
communicate with one another, we need to determine the
values of ICC objects at message-passing program points. For
example, in Figure 1(a), we want to know all the possible
values of intent at statement startActivity(intent). Ob-
jects of interest are Intents, Intent Filters and URIs. It is very
challenging to write data flow models separately for all of
these. That is why previous work [34] has not properly handled
URIs, which has two negative consequences. First, interactions
with Content Providers cannot be determined. Second, the data
field of Intents cannot be known, which significantly limits
the Intent resolution process. Any field that cannot be known
results in a loss of precision. For example, mapping the Intent
from Figure 1(a) with the component from Figure 1(b) requires
knowing the action and the URI data of the Intent. When the
data field is not known, any attempt to resolve the possible
targets of intent from Figure 1(a) has to conservatively
assume that the data field can take any value. Figure 1(c)
declares a dialer Activity DialerActivity. It is similar to
MapRenderingActivity, except that it adds support for a
DIAL action and it handles tel URI schemes. Because of



1 public class Intent {
2 private String action;
3 private Set<String> categories = new

HashSet <>();
4 private String data;
5 private String mimeType;
6
7 public void setAction(String act) {
8 this.action = act; }
9 public void addCategory(String cat) {

10 this.category = cat; }
11 public void setDataAndType(String d,

String t) {
12 this.data = d;
13 this.mimeType = t; }
14 public void setData(Uri u) {
15 this.data = u.getData();
16 this.mimeType = null; } }
17
18 public class Uri {
19 private String data;
20
21 public void setData(String d) {
22 this.data = d; }
23 public void getData() {
24 return this.data; } }

(a) Simplified Intent and Uri classes. The real ones comprise 2,000
and 1,200 SLOC, respectively.

1 class Intent {
2 String action; String categories; String data;

String mimeType;
3
4 mod <Intent: void setAction(String)> {
5 0: replace action; }
6 mod <Intent: void addCategory(String)> {
7 0: add categories; }
8 mod <Intent: void setDataAndType(String,String)> {
9 0: replace data;

10 1: replace mimeType; }
11 mod <Intent: void setData(Uri)> {
12 0: replace data, type Uri:data;
13 clear mimeType; }
14 query <Context: void startActivity(Intent)> {
15 0: type Intent; } }
16
17 class Uri {
18 String data;
19
20 mod <Uri: void setData(String)> {
21 0: replace data; }
22 source <Uri: String getData(String)> {
23 data; } }

(c) COAL specification for the constant propagation problem. Each modifier
specification (mod) describes the influence of a method call on the fields of an

Intent. A query indicates that all Intent values at calls to startActivity() should
be computed. A source indicates how the value of a field flows out of an object.

1 void sendMessage(Context c, boolean b,
String mimeType) {

2 Intent intent = new Intent();
3 intent.setAction("VIEW");
4 Uri uri = new Uri();
5 if (b) {
6 intent.addCategory("BROWSABLE");
7 uri.setData("http://icse-conferences.org");
8 intent.setData(uri);
9 } else {

10 uri.setData("file:///florence.jpg");
11 intent.setDataAndType(uri.getData(),

mimeType); }
12 c.startActivity(intent); }

(b) Message-passing code. We assume that the mimeType argument
may have value either image/jpg or image/*.

Value 1 Value 2 Value 3
action VIEW VIEW VIEW
categories {BROWSABLE} ∅ ∅
data http://... file:///... file:///...
mimeType ∅ image/jpg image/*

(d) Possible values of the fields of intent at the startActivity() call. We have
abbreviated the URI strings for space reasons, however our system would infer

complete strings. Value 1 is for the first branch after the if statement (Lines 6-8
in (b)). Values 2 and 3 account for the fall-through branch of the if statement,

where argument mimeType may have two different values.
Fig. 2. Running example.

its inability to infer Intent URI data, the current state-of-the-
art [34] would infer that both MapRenderingActivity and
DialerActivity can receive the Intent. In reality, only the
former is able to do so. Thus, more precision is needed to
avoid such false positives.

We address this issue in this paper. In Sections III
through VI, we introduce a novel approach to statically infer
the set of values that objects can take. In Section VII, we apply
this approach to the problem of inferring Android ICC values.

III. OVERVIEW

A. The MVC Constant Propagation Problem
Consider OBJ an object of type class Pair{int X; int
Y;}. Assume that at some program location OBJ can be either
(X, Y) = (1, 10) or (2, 20). We would like an analysis
that can determine this fact. Classical constant analysis applied
for each field fails at determining a useful value because none
of the fields is the same constant across all paths. Multi-valued
constant analysis could determine that OBJ.X ∈ {1, 2} and
OBJ.Y ∈ {10, 20}. These constraints accurately describe the
individual fields, but they allow for imprecision in the object,
because they allow the possibility that OBJ = (1, 20). We de-
fine the Multi-Valued Composite (MVC) constant propagation
problem to be the problem of determining the set of values
that an object viewed as a tuple (such as (X, Y)) can have.
Note that the above multi-valued constant analysis applied to
individual fields is a possible solution, it may just not be

precise enough for certain analyses. We will show how to
efficiently find more precise solutions.

We now introduce a running example that will be used
throughout. Figure 2(a) shows code for a hypothetical Intent
class that contains data used for passing messages between
application components. It uses a data field which is copied
from a Uri object, for which code is also shown in Figure 2(a).
Figure 2(b) defines method sendMessage(), which we as-
sume to be called as part of an Android application. This
method creates an Intent object and sets its action field. Then,
depending on the value of a Boolean, one of two things can
happen. In the first branch after the if statement, a value is
added to the categories field of intent. Then the data field of
a Uri object is copied to the data field of intent at Line 8. In
the fall-through branch, the data and type fields of the intent
variable are set using a call to setDataAndType() (Line 11).
Finally, the Intent object is sent to another component using
the startActivity() method.

The data flow problem we are solving is to determine
all the possible values of the fields of intent at the call
to startActivity(). In our propagation framework defined
below, the problem can be specified using COAL, a declarative
language we designed for this purpose. The function of COAL
(COnstant propAgation Language) is to specify Multi-Valued
Composite (MVC) constant propagation problems. It specifies
the types of variables for which values should be inferred
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and how these values are modified by program statements. It
enables abstract reasoning on the semantics of API methods.
The COAL language is recognized by our COAL solver, which
outputs solutions for many propagation problems solely from
their COAL specification and an input program.

Figure 2(c) shows how to specify the problem with our
framework using COAL. The COAL specification is manually
written once and it can subsequently be used to solve the
same problem for an arbitrary number of applications. It is
composed of field declarations, modifiers and a query. The
field declarations specify the fields that are being tracked and
their type. Note that, for each field, we keep track of sets of
values, even though the field declaration only specifies the type
of each individual field value. The first modifier indicates how
the setAction() method influences the modeled value of an
Intent object. A modifier specification starts with the signature
of the modeled method. Each line in a modifier declaration is
an argument whose value is used to modify the Intent value.
Each argument declaration is composed of several attributes.
An integer declares the position of the argument in the array of
arguments to the method, with indices starting at 0. After the
argument index, an operation and a field are declared. They
describe both the field that is modified by the method and how
it is modified. For example, in the setAction() modifier, 0:
replace action means that the action field is replaced with
the value of the first argument to setAction(). Other modifiers
are declared in a similar manner, except when the type of an
argument is a class that is modeled with COAL. In that case,
a type attribute is used in order to specify which field of
the argument object is used. For example, in the setData()
modifier, the 0: replace data, type Uri:data argument
means that the data field of the Uri argument is used to replace
the data field of the Intent being modified.

The query statement indicates that we are querying the so-
lution at all calls to startActivity(). Similarly to the modifier
declaration, we specify a list of arguments. They describe the
arguments whose value we would like to query. In this case, it
is the first argument (as described by the 0 attribute), which is
an Intent object. The source at Line 22 indicates how a field
value flows out of an object. This is useful when the value
subsequently flows into a COAL modifier, since the COAL
solver can then infer the correct value.

Figure 2(d) shows the expected result of our analysis.
We want our analysis to recover the three possible values

of Intent intent. These values correspond to all possible
execution paths of the program from Figure 2(b). We wish
to recover exactly these possible values, and we do not want
all the possible combinations of fields. For example, it is not
possible in our problem to have an Intent value with category
BROWSABLE and MIME type image/jpg. As a result, our
analysis does not simply track fields individually as separate
variables, but rather propagates composite constants.

B. MVC Constant Propagation Analysis
Figure 3 shows a general overview of the analysis process

that takes an application as input and outputs the values of
composite objects. It starts by converting the program to an
intermediate representation that is suitable for further analysis
(Step 1). It then generates an Interprocedural Control Flow
Graph (ICFG) (Step 2). An ICFG is a collection of CFGs of
all the procedures in the program connected with each other
at procedure call sites. This includes building a call graph for
the entire program. Finally, the actual MVC data flow analysis
takes place in Step 3 and outputs the MVC constant values.

Existing work [1], [30] can perform Steps 1 and 2. There-
fore, the scope of this paper is limited to the MVC data flow
analysis (Step 3), which is performed using our COAL solver.
Figure 4 depicts a more detailed overview of the COAL solver,
which takes two inputs. First, it uses the ICFG of the program
being analyzed. Second, it takes a COAL specification for
the problem being solved. This COAL specification describes
the structure of the composite objects for which constant
propagation should be performed. It also describes the methods
that can modify these objects and the program locations
where the constants should be computed. The specification
is written using the COAL language, which allows MVC
constant propagation problems to be specified easily. It should
be noted that, for a given problem, the COAL specification
need only be written once, after which an arbitrary number of
programs can be analyzed.

For each program, the COAL specification is parsed to
build a model of the problem by creating problem-specific
lattices of values and data flow functions. These are input
with the ICFG into a solver for Interprocedural Distributive
Environment (IDE) problems [36]. We present the generic IDE
model for constant propagation in Section V. Finally, since the
values of arguments to functions have to be known, we use
argument value analyses (e.g., integer and string analyses) to
generate the data flow functions.

The IDE solver outputs the analysis results. The COAL
language allows specification of program points of interest
(queries) where the MVC constant values should be computed.
This is useful in cases where the program points of interest are
known in advance. In other cases, we also allow lower-level
queries to the IDE solver as part of the COAL solver API. The
results can then be output in a simple text format or accessed
using a programmatic interface (API).

Note that it is possible to write MVC data flow models
for individual classes in an ad hoc manner without using an
MVC constant solver. However, given the complexity of a
typical MVC model, doing so is time consuming and prone
to errors. In contrast, the approach we present relies on a



〈model〉 ::= ‘class’ 〈type〉 ‘{’ { 〈field〉 | 〈modifier〉 | 〈query〉 | 〈constant〉
| 〈source〉 } ‘}’

〈field〉 ::= 〈type〉 〈field name〉 ‘;’
〈modifier〉 ::= ‘mod’ 〈method sig〉 ‘{’ { 〈modifier arg〉 } ‘}’
〈query〉 ::= ‘query’ 〈method sig〉 ‘{’ { 〈query arg〉 } ‘}’
〈constant〉 ::= ‘constant’ 〈field sig〉 ‘{’ { 〈field name〉 ‘=’ 〈inline value〉

‘;’ } ‘}’
〈source〉 ::= ‘source’ 〈method sig〉 ‘{’ 〈field name〉 ‘;’ ‘}’
〈modifier arg〉 ::= [〈arg number〉 ‘:’] 〈operation〉 〈field〉 [‘,’ 〈arg type〉 ‘:’

〈field name〉]
〈query arg〉 ::= 〈arg number〉 ‘:’ 〈arg type〉
〈arg number〉 ::= 〈integer〉 | ‘(’ 〈integer〉 {‘,’ 〈integer〉 } ‘)’
〈arg type〉 ::= ‘type’ 〈type〉
〈field sig〉 ::= ‘<’ 〈type〉 ‘:’ 〈type〉 〈field〉 ‘>’

Fig. 5. COAL language for specifying MVC constant propagation problems.

single, generic and formally defined MVC data flow model.
Instead of specifying data flow models for each class being
analyzed, MVC constant propagation problems are specified
by writing COAL specifications. This approach has several
advantages over the ad hoc one. First, it is easier to im-
plement and maintain, since COAL specifications are written
using a simple declarative language. Second, it is easier to
ensure that the models and their implementation are correct.
Correctness of the generic model is discussed in Section VI-A
and in an accompanying technical report [31]. Since COAL
specifications only describe the relationships between fields
and methods without specifying semilattices or flow functions,
their correctness is relatively simpler to verify. Third, the
generic data flow model used by the COAL solver can be
changed without having to rewrite all the COAL specifications
that have been written so far. In particular, we are currently
using an IDE model [36], but it is possible to use reductions
to other types of problems [35]. Finally, when modeled types
interact with one another the data flow functions in the ad hoc
approach become much more complex. On the other hand, the
fixed point iteration described in Section VI-C supported by
the COAL constructs demonstrated at Line 12 of Figure 2(c)
enables seamless support for inter-object data flows.

IV. THE COAL LANGUAGE

The goal of the COAL language is to specify and query a
wide variety of MVC constant propagation problems. COAL
specifications are used by our solver to automatically generate
semilattices of values and data flow functions.

A simplified grammar for this language is presented on
Figure 5. The {} characters symbolize repetition, while []
characters surround optional parts of a production.

The model for a given object is composed of field decla-
rations, modifiers, constants and sources. Queries can also be
specified using the COAL language to specify program points
where MVC constants should be inferred.
Field declarations - A field declaration specifies a field that
is part of the modeled class. It describes a data type and a
name for the field. In Figure 5, we use non-terminals 〈type〉
and 〈field name〉 to represent valid types and field names.
Modifiers - Modifiers represent method calls where constant
values flow to the modeled object. The specification of the
modifiers comprises a method signature 〈method sig〉 that
identifies the method of interest. It also includes a set of
arguments that describe how the method arguments are used

to modify the fields of the modeled object. A modifier argu-
ment has several attributes. An argument index identifies the
method argument of interest. In some cases, several arguments
contribute to the value of a single field. That is why the
language supports sets of argument indices. A field operation
to be performed is also specified. This allows the solver to
create appropriate data flow functions. Natively supported field
operations are add (add argument value to the field), remove
(remove argument value from field), replace (replace field
with argument value) and clear (clear field value). A modifier
specification also includes a field name that identifies the field
being modified. In the case where an argument is a class
modeled with COAL, an argument type and additional field
name are specified. This indicates to the solver that the value of
a field of a modeled class flows to the object being modified.
Constants - Many languages allow the specification of
constants (e.g., static final fields in Java). The constants of
a class are initialized in the class initializer the first time the
class is referenced. A naı̈ve way to deal with constants would
consist in tracking the constant creation and initialization as it
is done for all modeled objects. We would then propagate them
throughout the entire program at the cost of performance. As a
performance optimization, we allow constant modeled objects
to be specified in COAL. Where these values are used, the
COAL solver uses the specified value.
Sources - Sources model the case where a modeled field
value flows to an argument value. For example the source at
Line 22 of Figure 2(c) allows the COAL solver to infer that
the data field of the Uri object flows to the intent variable.
Using this information allows the solver to infer the correct
value for the data field of intent.
Queries - Queries specify statements of interest where
modeled values should be determined.

The MVC constant propagation problem from Figure 2(b)
can be solved by inputting the program and the specification
from Figure 2(c) into our COAL solver. Alternative methods
such as code annotations could be used to specify these prob-
lems. However, our approach specifies all analysis parameters
in a single location and does not require the source code of
the modeled objects. Annotations, on the other hand, would
require source code and they would have to be spread over
the modeled code. In our motivating example of Android, this
implies spreading specifications over thousands of lines code.

V. A GENERIC MODEL FOR MVC CONSTANT
PROPAGATION

The purpose of the COAL language and the associated con-
stant propagation solver is to determine the possible values of
composite objects by only defining a COAL specification. The
COAL solver automatically converts the COAL specification
to an instance of an Interprocedural Distributive Environment
(IDE) problem, using the model defined in Section V. Given an
IDE problem, existing algorithms can compute a solution [36].
This section presents the analysis domain and a space F of
functions that model the influence of COAL modifiers. They
will subsequently be used in Section VI to automatically build
reductions to IDE problems. Interested readers are referred to
the technical report [31] for a more detailed presentation.



A. The L Semilattice of Values
For any set X , we denote the power set of X by 2X and

the set of functions from X to X by XX . We are trying to
determine the value of an object with n fields, taking values
in finite sets V1, . . . , Vn. If field i has a container type (e.g.,
set of integers), Vi is the contained type (e.g., integer). For
i ∈ {1, . . . , n}, let Pi = 2Vi ∪ {ω}, where ω represents an
undefined value. Let B = P1 × · · · × Pn. We define L =
(2B ,⊆) a join-semilattice with a bottom element ⊥ = ∅. The
join operation on L is the set union ∪. The top element of L
is the set of all elements in B.

Sets V1, . . . , Vn are the domains of the field values we
are trying to determine. For example, V1 could be the set of
constant strings of characters in the program. A value in B
represents a value as it is seen on a single path. Finally, values
in L represent values of objects, taking into account several
paths of a program. Note from the definition of P1, . . . , Pn

that we keep track of sets of values, even for scalar fields. A
scalar is simply represented by a set with a single value.

Let us consider the example from Figure 2(a). We are in-
terested in four fields: action, categories, data and mimeType.
Let S be the set of string constants in the program. In this
case, we consider P1 = P2 = P3 = P4 = 2S ∪ {ω}. In other
words, we consider all four fields to take values in the power
set of S. We have B = P1 ×P2 ×P3 ×P4 and L = (2B ,⊆).

In method sendMessage(), the value associated with the
intent variable is initially ⊥ before Line 2. Line 2 transforms
this value to {(∅,∅,∅,∅)}. Right after Line 3, the value is

{({VIEW},∅,∅,∅)}. (1)
After the if statement, at Line 12, the value is
{({VIEW}, {BROWSABLE}, {http://icse-conferences.org},∅),
({VIEW},∅, {file:///florence.jpg}, {image/jpg}),
({VIEW},∅, {file:///florence.jpg}, {image/*})}.

(2)

B. Transformers on L
The intuition behind the COAL language is that each

argument in a COAL modifier represents the influence of the
method call on a field. Accordingly, we introduce transformers
that are defined at the granularity of fields. In this section, we
assume that the value of uri is available where necessary. We
revisit this assumption in Section VI-C.
Definition 1 - For i ∈ {1, . . . , n}, we define Fi a non-empty
subset of PPi

i closed under composition. Each φ ∈ Fi is called
a field transformer.

In this paper, we consider field transformers φ such that:
• Type (1): φ(ω) = ω and for all X ∈ Pi such that
X 6= ω, φ(X) = (X −KILL) ∪GEN , for some constant
sets GEN and KILL in Pi. Such a function will also
be denoted as φ = φKILL

GEN . This is used for the add and
remove field operations in COAL.

• Type (2): For all X ∈ Pi, φ(X) = GEN , for some GEN
in Pi. This case is also denoted by φ = φGEN . This is used
for the replace and clear field operations in COAL.

It is easy to verify that the set of such field transformers is
closed under composition.

Let us denote the identity field transformer by id. We have
id = φ∅∅. The important idea is that each modifier argument in
COAL is mapped to a single field transformer. For example,

let us consider the statement at Line 3 of Figure 2(b). Using
the definition above and the fact that this method replaces the
existing action value, we can model it using type (2) field
transformer φ{V IEW}.

Field transformers are used as basic building blocks for data
flow functions. We define the set L of functions from B to
B such that for any l ∈ L, there exists (φ1, . . . , φn) ∈ F1 ×
· · · × Fn such that, for any b = (β1, . . . , βn) ∈ B, l(b) =
(φ1(β1), . . . , φn(βn)). We note l = φ1×· · ·×φn. Recall that
the influence of the statement at Line 3 of Figure 2(b) on field
action is modeled by field transformer φ{V IEW}. The function
in L that models the influence of the setAction() call on the
action field is quite naturally φ{VIEW}× id× id× id ∈ L. This
function solely modifies the action field.

Functions in L model the influence of a single execution
path. We can define their composition as follows. For any
l1 = φ11 × · · · × φ1n and l2 = φ21 × · · · × φ2n in L, we have:

l1 ◦ l2 = φ1
1 ◦ φ2

1 × · · · × φ1
n ◦ φ2

n.

Using Definition 1, L is closed under composition.
We now define a set F of functions from L to L using

functions in L. Functions in F can model the influence
of several execution paths on all fields of an object. More
specifically, any f ∈ F is written f = {l1, . . . , lm}, with
l1, . . . , lm ∈ L, such that:
• for any b ∈ B, f({b}) =

⋃m
i=1 li(b),

• for any v = {b1, . . . , bk} ∈ L, f(v) =
⋃k

i=1 f({bi}).
The identity over L is denoted by idL. Additionally, F
contains Ω, which is such that for all v ∈ L, Ω(v) = ⊥.
Informally, the Ω function is used to “kill” data flow facts. This
only happens when a variable is assigned a new value. Finally,
F contains initv functions, which are such that initv(⊥) = v,
with v ∈ L. Informally, init functions generate data flow facts
and associate them with an initial value.

Let us now consider the if statement in Figure 2(b). The
influence of the two branches is summarized by

{id× φ∅
{BROWSABLE} × φ{http://icse-conferences.org} × φ∅,

id× id× φ{file:///florence.jpg} × φ{image/jpg},
id× id× φ{file:///florence.jpg} × φ{image/*}},

(3)

where φ∅ clears the value of the mimeType field. We can verify
that applying this function to the value given by Equation (1)
yields the value given by Equation (2).

By defining the composition of elements of F in a standard
way, it is possible to prove the following proposition [31],
which will be used in the next section.
Proposition 1 - F is closed under composition.

Finally, we define the ∪ operator such that, for
f1 = {l11, . . . , l1m} and f2 = {l21, . . . , l2k}, f1 ∪ f2 =
{l11, . . . , l1m, l21, . . . , l2k}.

VI. FROM COAL SPECIFICATIONS TO IDE PROBLEMS

This section presents how COAL specifications are used to
automatically generate instances of IDE problems by generat-
ing data flow functions in F . Recall that IDE problems can
then be solved using existing algorithms [36]. We first outline
the requirements of IDE problems.

A. Environment Transformers
Let D be the set that comprises all variables in the program

and a special Λ symbol, which represents the absence of a data



Algorithm 1 Generate functions in F from COAL modifiers.
1: procedure GENERATEFUNCTION(modifier, statement)
2: result := idL
3: for all arguments arg in modifier.args do
4: values := null
5: if arg.number != null then
6: values := GETARGUMENTVALUES(statement, arg.number,

arg.type)
7: arg function := null
8: if values 6= null then
9: for all argument values value in values do

10: current := BUILDFUNCINF(arg.op, value, arg.field)
11: if arg function = null then
12: arg function = current
13: else
14: arg function = arg function ∪ current
15: else
16: arg function := BUILDFUNCINF(arg.op, null, arg.field)
17: result := result ◦ arg function
18: return result

flow fact. An environment is a function from D to L, where
L was introduced in Section V-A. The set of environments
is E. A join operation t is defined on E such that, for
any e1, e2 ∈ E and d ∈ D, (e1 t e2)(d) = e1(d) ∪ e2(d).
Environment transformers are used to model the influence
of program statements on the values of variables. They are
functions from E to E. For example, before a program
statement s, the values associated with each variable of interest
are given by environment e1 ∈ E. Statement s transforms
e1 to a new environment e2 ∈ E, which is modeled by
an environment transformer t such that e2 = t(e1). The
IDE framework requires that environment transformers be
distributive. An environment transformer t is said to be dis-
tributive if, for every e1, e2, · · · ∈ E and for any d ∈ D,
(t(tiei))(d) = ∪i(t(ei))(d).

The main function of the COAL solver is to turn COAL
specifications into distributive environment transformers. We
can show that the functions in F are distributive and that they
can be used to easily build distributive environment transform-
ers [31], which ensures the correctness of our approach.
B. Generating Functions in F

Since producing environment transformers from functions
in F is trivial, this section addresses how the COAL solver
builds elements of F from COAL specifications. Algorithm 1
is used by the COAL solver to generate a function in F from
a statement and a modifier specification for the statement. It
computes functions in F for each argument and composes
them (recall from Proposition 1 that F is closed under com-
position). A modifier argument arg has several attributes: (i)
an operation op, which is performed by the modifier method,
(ii) an argument number number, which indicates the position
of the arguments of interest in the modifier method, (iii) an
argument type type, which can be declared as part of the field
declaration (see Line 2 of Figure 2(c)) and (iv) field, the
index (or the name) of the modified field.

We assume the existence of a procedure GETARGUMENT-
VALUES, which computes the possible values of a method
argument, given an invoke statement, an argument number
and an argument type. For most value types, this procedure
simply traverses the interprocedural control flow graph starting
at the method call looking for assignments to the variable
that is used as an invocation argument. For string arguments,
we use the analysis described in Section VII-A. Note that

the argument type is needed by the COAL solver to select
the argument analysis that should be used. We also assume
that there is a procedure BUILDFUNCINF that generates a
function in F given an operation, an argument value and a
field. In the interest of space, we only summarize its main
steps. It starts by generating a field transformer φ using
the operation and the argument value. The field index (or
name) allows the creation of a function l ∈ L of the form:
l = id×· · ·×id×φ×id×· · ·×id. The corresponding function
in F is simply {l}. When a modifier method argument may
have several values resulting in possible functions f1, . . . , fn,
we compute f1 ∪ · · · ∪ fn (Line 14).

To illustrate this procedure, let us consider Line 11 of
Figure 2(b). The COAL solver determines that this is a
modifier with two arguments (see Figure 2(c) Lines 8-10).
Considering the first argument 0: replace data and given
the fact that data is a string field, the GETARGUMENTVAL-
UES procedure finds that the method argument has value
file:///florence.jpg. Since a replace operation is re-
quested, the BUILDFUNCINF procedure generates field trans-
former φ{file:///florence.jpg}. Using the fact that data is the
third field (Line 2 of Figure 2(c)), it generates function

{id× id× φ{file:///florence.jpg} × id}. (4)
Considering argument 1: replace mimeType, the solver
finds that there are two possible values for the mimeType
variable. Thus, Lines 9-14 of the algorithm yield function

{id× id× id× φ{image/jpg}, id× id× id× φ{image/*}}, (5)
where Line 14 utilizes the definition of the ∪ operator on F
from Section V. Finally, Line 17 of Algorithm 1 composes the
two functions given by Equations (4) and (5), which yields:

{id× id× φ{file:///florence.jpg} × φ{image/jpg},
id× id× φ{file:///florence.jpg} × φ{image/*}}.

C. Fixed Point Iteration
Let us consider method sendMessage() from Figure 2(b).

So far, we have assumed that the value of the Uri uri at Line 8
of Figure 2(c) is available when we generate field transformers
for intent. In reality, it is not initially available, because when
we solve the problem for the first time, values for intent
and uri are computed in the same iteration. Thus, in order to
fully resolve all values, we run several iterations of the COAL
solver. For example, in the first iteration, the transformer that
is generated for statement intent.setData(uri) is

{φintent,1 × φintent,2 × φintent,3 × φintent,4} =
{id× id× id× φuri,1} ,

where φuri,1 is a transformer that indicates that the value of
the data field of intent refers to the first field of Uri uri.
We initially start with φintent,i and φuri,1 mapping to ω, for
1 ≤ i ≤ 4. We then iterate until a fixed point is reached for
φintent,i and φuri,1. The same process allows the solver to
resolve the value of intent at Line 11 of Figure 2(b).

VII. APPLICATION TO ANDROID ICC
As an application of the COAL language and solver, we

built IC3 (Inter-Component Communication analysis with
COAL), an ICC inference tool that is based on COAL speci-
fications. The main ICC classes are Intents, Intent Filters and
URIs. For completeness we also model the Component Name,
Bundle, Pending Intent and Uri Builder classes since they are
referenced by the main class types.

Recall from Figure 3 that as a prerequisite to the MVC
constant propagation, it is necessary to generate an inter-



mediate representation (IR) that is suitable to generate an
ICFG. The COAL solver is currently implemented using the
Soot framework [39] and the Heros IDE solver [3]. Soot
converts Java bytecode to an internal IR that is recognized
by its Spark [23] call graph construction module, which is
used to build an ICFG. However, Android applications present
additional challenges. First, they are distributed in a platform-
specific bytecode format. We therefore preprocess them with
Dare [30], which converts Android to Java bytecode. Second,
Android applications are composed of components that may
be started in an arbitrary order. Additionally, they are event-
based programs that declare callbacks that may be called in
an arbitrary order. In order to address this challenge in a
conservative manner, we adopt the call graph construction
procedure from FlowDroid [1], which generates a wrapper
entry point method that simulates the application lifecycle and
the arbitrary event and component call order.

The COAL solver takes aliasing into account. When a
method modifies a variable o1 that is a possible alias for
another object o2, our analysis generates two values for o2.
One of them takes the call into account and the other one
does not. The one that does not models the case where the
alias analysis results in a false positive (i.e., detecting that a
value may point to a certain heap location even though it does
not). This is similar to the standard idea of weak updates [7].

A. String Analysis
Strings are ubiquitous in Android applications. Many argu-

ments to ICC methods are strings. Because of the limited set
of predefined Intent fields (e.g., default action and category
strings), in many cases, the value of string fields is deter-
mined by a finite set of constants. However, the way these
constants are transferred or combined is not trivial and a string
analysis is required to determine the set of possible values
that a given variable can have. Our string analysis determines
a safe overapproximation of such sets. It was inspired by
JSA [9], although our analysis is highly customized for the
purposes of Android. Conversely, JSA is more generic but
significantly slower for our purposes. Our analysis works
in two stages: constraint generation and constraint solving.
Constraint generation simply gathers the dataflow facts for
string variables. Constraint solving determines regular sets
(described as regular expressions) that satisfy the constraints.

In the first stage we generate constraints for all string
operations, modeling the String and StringBuilder classes. Our
goal is to have a representation that can be used either by
a constraint solver or by abstract interpretation. This is why
the constraints are a symbolic representation of the original
program operations. The analysis is flow-sensitive. Constraints
model idioms that are common in Android operations: con-
catenation, string fields, function calls, etc.

In the second stage, a solver uses the constraints to answer
queries about variable values. As a proof of concept, we
implemented a simple solver that given a variable x produces
a regular expression that overapproximates the set of values
that x can take. It works by finding the constraints associated
with x and by traversing the flow graph and interpreting the
nodes. We avoid non-termination by detecting self dependence

cycles and widening to .* (that is ⊥). Similarly, we widen
to .* when we detect calls to functions outside the analysis
(for which we have not generated constraints). Although our
widening method may be less accurate than that in [9],
our simple solver is faster and can still be more accurate
because of context sensitivity. Our analysis is interprocedural,
context-sensitive, flow-sensitive, field-sensitive but not object-
sensitive. Additional details about the string analysis can be
found in the technical report [31].
B. Evaluation

The evaluation of our approach was aimed at answering
three central questions:
Q1: Can IC3 precisely infer field values of ICC objects?
Q2: As an application of our analysis, how precisely can ICC

messages be matched with their targets?
Q3: Are the computational costs of IC3 feasible in practice?
The answer to these questions determines how effectively our
analysis can be used as the basis of inter-component analyses.
Highlights of our evaluation are:
• IC3 infers precise field values for 85% of ICC values.

Epicc can only infer 66%. This is a significant increase
in precision.

• When matching components that may communicate with
one another, specifications from IC3 lead to 78% fewer
component links than the current state-of-the-art.

• On average, our analysis takes 140 seconds per application.
This makes it feasible in practice to use our analysis as the
first step of inter-component analyses.

For performance reasons, we generally do not allow the
constant propagation to analyze the Android framework code.
The only exception is when a framework class may create
or modify ICC objects, which only occurs in a few classes of
the framework. In the few cases where ICC method arguments
are not strings of characters (e.g., integer arguments), we use a
simple analysis that looks for definitions of constant values for
that argument. It simply traverses the interprocedural control
flow graph starting at the method call, keeping track of all
possible values. When a constant value cannot be found, a
special ω value is conservatively returned.

We performed our experiments on a corpus of 500 appli-
cations. They were randomly selected from a set of 453,525
applications downloaded from the Google Play store between
January and September 2013. Some application could not be
processed because of insufficient memory errors or timeout,
so we report numbers for 460 applications.
Precision of field values - We first measured the precision
of the fields of the ICC values inferred by IC3 at program
points of interest (i.e., sending a message, or programmatically
registering a component with an Intent Filter). The list of these
program points is given in [31]. We counted the number of
ICC values inferred by IC3 and Epicc [34] for which no field
value used for Intent or URI resolution is completely unknown
(e.g., a .* string value). We modified Epicc such that it used
the same entry point construction procedure from [1]. The
precision results are presented in Table I. The third line shows
the results for Intents and Intent Filters, whereas the fourth line
shows statistics for URIs. The value count column shows the



TABLE I
ICC VALUE FIELD PRECISION RESULTS.

Value ICC values with precise fields ICC values with imprecise fields Missing ICC values
count Epicc IC3 Epicc IC3 Epicc IC3

Intents & Filters 5,306 3,660 (69%) 4,575 (86%) 1,474 (28%) 662 (12%) 172 (3%) 69 (1%)
URIs 522 176 (34%) 374 (72%) 158 (30%) 85 (16%) 188 (36%) 63 (12%)
Total 5,828 3,836 (66%) 4,949 (85%) 1,632 (28%) 747 (13%) 360 (6%) 132 (2%)

total number of ICC objects that were detected. The third and
fourth columns present the number of ICC values discovered
by Epicc and by IC3 that only have precise (e.g., not equal to
.*) field values. The fifth and sixth columns show the number
of imprecise values detected by each tool. Finally, the missing
columns show the number of locations where an ICC value
was missed by either tool.

We observe that the precision of the values inferred by IC3
for Intents, Intent Filters and URIs was high, with 85% of
values being detected accurately by our tool. Epicc, on the
other hand, could only precisely detect 66%. Of the 915 Intent
and Filter values that IC3 detected precisely but Epicc did
not, 591 were due to the presence of URI data in Intent
values, which is not handled by Epicc. In 4 cases, Epicc
missed a value that IC3 did not. The remaining 324 cases that
were precisely detected by IC3 and not by Epicc were due
to the more powerful string analysis. There was also a clear
difference in the case of URIs, with IC3 precisely determining
374 values, compared to 176 for Epicc. That is because Epicc
does not include a thorough model for URIs. In particular, a
number of methods refer to other modeled objects. Since this
is handled in an ad hoc manner in Epicc, good coverage of
these methods cannot be achieved, resulting in a lot of missed
values. On the other hand, using COAL specifications, IC3
achieves much better coverage of URI methods. In particular,
references to modeled values are handled in a principled and
generic manner. Finally, IC3 detected 73 fewer URI values
imprecisely than Epicc, thanks to our new string analysis.

There are several reasons why IC3 missed 132 ICC values.
First, some API callback methods have Intent or URI argu-
ments that cannot be known statically. For example, method
onReceive() is a Broadcast Receiver callback that is called
upon reception of an Intent. The received Intent is passed as an
argument to that method by the framework upon activation of
the Receiver. The value of that Intent is in general impossible
to determine statically. We found 48 such cases. Another
related case was when URIs were extracted from Intents that
were callback arguments with the getData() method, before
being used to address Content Providers. Another cause for
missed ICC values was when Intents were extracted from
containers such as sets or lists. We will investigate handling
these by tracking the values of these containers in future work.
We note that handling containers is challenging, especially
if tracking array indices is desired. Finally, we found a few
pathological cases where a call to an interface or abstract
method returning an Intent was not resolved to the proper
possible subtypes by the call graph construction procedure.

In the 747 cases where imprecise values were inferred,
the arguments to ICC API methods could not be determined.
Some cases are not yet handled by our argument analyses
(e.g., integer fields and string array fields), while other cases
cannot be determined statically (e.g., sequences of complex

string operations). We will continue investigating the cases
that can be resolved while keeping good performance.
Component matching - As an application of inferring ICC
values, we matched the computed Intents with potential target
components for the 460 applications. This is a fundamental ap-
plication of the ICC analysis, since the matching is necessary
for any inter-component analysis. Matching precision deter-
mines the precision of the overall analysis. Its influence on
analysis precision is similar to the influence of the call graph
construction process in interprocedural program analyses: an
imprecise call graph results in an overall imprecise analysis.

We implemented a matching process that was modeled
after the Android Intent resolution process. We performed
the matching using both the values computed by IC3 and
those calculated by Epicc. Matching Intent-sending program
locations with potential target components using values output
by IC3 produced 26,872 links. In contrast, the matching that
used Epicc values yielded 120,817 links. When performing
inter-component analysis, fewer potential links imply fewer
false positives (since the ICC value computation and matching
are conservative). The 78% reduction in potential targets is a
very significant gain in precision. The reason why a 19% gain
in ICC value precision resulted in a 78% gain in matching
precision is that imprecise ICC values often cause an explosion
of the number of potential links. For example, when the action
of an Intent is not known, the matching process conservatively
matches it with all Intent Filter action values.
Performance - Processing all the applications took 64,571
seconds using our tool, or slightly less than 18 hours of
compute time. That is about 140 seconds per application
on average. The processing time was dominated by the IDE
problem solver and the string solver, taking 73% of the time
overall. The second most time-consuming function was the
entry point building procedure of [1], taking 20% of the total
time. Soot analyses (class loading, type inference, final call
graph construction, etc.) took 4% of the time. Other parts
of the analysis (e.g., COAL model parsing, result generation)
took 3% of the total time. We did not find any clear trend
describing how running time grows with size parameters of
the input program. We leave this matter for future work.

VIII. DISCUSSION

Writing COAL specifications requires some effort, which
could be seen as a limitation. However, the effort to write a
specification is much less than the effort required to produce
separate data flow models for each object. We have also found
that it is less prone to errors. Finally, handling cases where
modeled objects reference other modeled objects in a princi-
pled way (for example see Lines 12 and 22 of Figure 2(c))
has allowed us to model complex inter-object relationships
such as the one between Android Uri, UriBuilder and Intent.
We estimate that writing specifications for all modifiers and



queries for Android took us approximately five hours using
the developer documentation for the classes involved. On the
other hand, writing ad hoc composite constant propagation
models for Epicc took longer than eight hours for each
modeled object, with an incomplete coverage. In order to make
writing specifications more effortless, we are looking into a
semi-automated inference approach. We believe that COAL
elements such as the list of fields, many modifiers and sources
as well as queries can be inferred automatically.

We have successfully applied composite constant propa-
gation to Android ICC, but it can also be applied to other
problems where object values have to be inferred. In order to
ensure that this is the case, the COAL solver can be extended
by registering new COAL keywords for field operations and
field types. This enables support for additional operations
beyond add, remove, replace and clear, as well as for additional
method argument analyses.

Our evaluation does not compute the number of spurious
values that would be computed if we were not keeping track of
the correlations between fields. We expect that, similarly to any
analysis refinement, this will be useful in some contexts more
than others. In future work, we will quantify the precision
benefit and potential performance penalty of keeping track of
field correlations over traditional constant propagation. We will
also compare our results with values from dynamic traces.

IC3 has the traditional limitations of static analysis on
Java. It does not handle native code or reflection. Some ap-
proaches [4] exist that can handle reflection for Java programs
and could be adapted for Android. Loops and recursion are
naturally handled for the operations that we defined (i.e., add,
remove, clear and replace) because the corresponding field
transformers are idempotent for composition. Other operations
(e.g., appending to a list) would require carefully defining the
composition of the corresponding field transformers.

IX. RELATED WORK

Single-valued interprocedural constant propagation has been
studied in the past [6], [16], [27], [36]. Unlike our work,
for each constant these works seek to find a single value
that is common to all interprocedural paths. Multi-valued
constant propagation [2], [26] has also been studied. While
our constant propagation is also multi-valued, it propagates
composite types. As we explain in Section III, it is possible
to simply consider fields to be separate, single variables.
However, this approach limits the precision of the results.

We are not the first to consider tuples of values in the
context of static analysis. Several works have used tuples or
vectors to represents properties of sets of sets of variables [10],
[19], [20], keeping track of correlations between properties
of different variables. Our analysis is more restricted in that
it only handles correlations between object fields. However,
our goal is different: we aim to provide analysis designers
with a relatively easy-to-use layer of abstraction to statically
compute possible object values without having to write data
flow functions. This has enabled us to write a thorough model
of Android ICC with limited effort. We hope that it will
allow other analysis designers to quickly prototype and run
composite constant propagation analyses in various contexts.

Analysis of Inter-Component Communication in Android
has been performed in past work. Dynamic analysis has
attempted to enforce security policies related to ICC [5],
[12]. Other work has performed inter-component dynamic
taint analysis [13]. Static analysis has also been investigated.
ComDroid [8] attempts to determine a limited number of
properties of Intents. Epicc [34] is the first work that tried
to determine most Intent attributes that are useful for compo-
nent matching. It performs some ad hoc composite constant
propagation, which is considerably more complex than writing
COAL specifications. Another important difference is how
we deal with cases where modeled classes reference other
modeled types. Epicc deals with them in an ad hoc, class-
specific manner. On the other hand, our iterative algorithm
described in Section VI-C is completely generic and can
apply to all occurrences of modeled value references. As a
result, we can model all of ICC in Android. However, like
Epicc, our analysis is context-sensitive and flow-sensitive.
Apposcopy [15] uses static analysis as the basis of a signature-
based malware detection system. The static analysis includes
some ICC analysis limited to a subset of the Intent fields. In
particular, URI data is not considered.

String analysis reasons about the set of values for string vari-
ables. While much work has been performed in this area [9],
[17], [21], [28], [37], [40], JSA [9] is the closest to our
analysis. However, JSA seeks to model all string operations,
whereas we limit our analysis to the most common cases.
Additionally, while JSA performs its own pointer analysis, we
rely on the more efficient Spark [23] analysis, which is already
performed as part of the ICFG building process. As a result,
our analysis is much more efficient in the context of Android
ICC analysis. Initial tests with JSA showed processing times
well over an hour for medium sized applications, which made
the entire ICC analysis impractical.

X. CONCLUSION

In this paper, we introduced the MVC constant propagation
problem, and we presented the COAL language and the
associated solver for MVC problems. We also developed IC3,
an Android ICC analysis tool that is based on a reduction to
an MVC problem. As a part of IC3, we developed a sound
string analysis that offers an effective tradeoff of scalability
and precision. We achieved a much greater accuracy in ICC in-
ference than previous work. In the future we plan to investigate
more ways to improve accuracy, and to what extent generating
COAL specifications can be automated. Finally, we will apply
our IC3 work to design novel inter-component analyses in
Android.
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